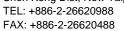


Headquarter Address: 8F.No.33, Lane 155, Sec.3, Bei-Shen Rd., Shen Keng Dist, New Taipei City, Taiwan


TEL: +886-2-26620988 FAX: +886-2-26620488

Product/Process Change Notification

PCN#	Effective Date		Issue Date	
2017-05-25C-01	2017/8/25		2017/5/25	
PCN Classification		Product Category		
Major		Mosfet		
	Sı	ubject		
Production process change from	n lead free to	halogen free.		
	Affected	l Product(s)		
SC-59 Package of Mosfet, Such as attachments.				
	Description	n of Change(s)		
To meet EU environment requirement, we implement halogen free to our products.				
	Content	of Change(s)		
Adding "-C" to each part number.				
	lmı	pact(s)		
N/A				
	Attac	hment(s)		
SGS report. Reliability report.				

Approval				
Issue by	Alice Lai	e-mail: alice@secosgmbh.com		
Development Engineer		Alice Lai		
QA Manager		Peter Yang		
General Manger	Qui.	Mathew Liu		

For more information, please contact us directly or visit our website http://www.secosgmbh.com

Affected Product(s)

SMG2301	SMG2326N	SMG2359P
SMG2302	SMG2327P	SMG2361P
SMG2302N	SMG2328	SMG2370N
SMG2305	SMG2328NE	SMG2371P
SM G2305P	SMG2328S	SMG2390N
SMG2305PE	SMG2329P	SMG2392N
SMG2306A	SMG2330N	SMG2398N
SMG2306N	SMG2334N	SMG2398NE
SMG2306NE	SMG2336N	SM G3400
smg2307pe	SMG2339P	SM G3401
SMG2310B	SMG2340N	SM G3402
SMG2310N	SMG2340NE	SM G3403
SMG2314N	SMG2342N	SM G3407
SMG2314NE	SMG2342NE	SM G5402
SMG2318N	SMG2343	SM G5403
SMG2319P	SMG2343P	SM G5406
SMG2321P	SMG2343PE	SM G5409
SMG2322N	SMG2345P	SMG2358N
SM G2325P	SMG2345PE	SMG2305A

Test Report No. SHAEC1616358403 Date: 01 Aug 2016 Page 1 of 23

ETERNAL ELECTRONIC MATERIALS (KUNSHAN) CO., LTD. 267 QINGYANG ROAD, KUNSHAN JIANGSU PROVINCE, CHINA

The following sample(s) was/were submitted and identified on behalf of the clients as: EPOXY MOLDING

COMPOUND

SGS Job No.:

SP16-026826 - SH

Model No.:

ETERKON EK-5600G

Client Ref. Information:

EK-3600G, EK-3600GH, EK-3600GT, EK3600GTM, EK-3600GK, EK-3600GHR,

EK-3600GHL, EK3600GHQ, EK-3600GTL, EK-3600GTR, EK-3600GTE, EK-5600G, EK-5600GH, EK-5600GHQ, EK-5600GHR, EK5600GHL,

EK3600GTRG, EK3600GSA

Date of Sample Received:

25 Jul 2016

Testing Period:

25 Jul 2016 - 01 Aug 2016

Test Requested:

Selected test(s) as requested by client.

Test Method:

Please refer to next page(s).

Test Results:

Please refer to next page(s).

Conclusion:

Based on the performed tests on submitted sample(s), the results of Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBBs),

Polybrominated diphenyl ethers (PBDEs) and Phthalates such as

Bis(2-ethylhexyl) phthalate (DEHP), Butyl benzyl phthalate (BBP), Dibutyl phthalate (DBP) and Diisobutyl phthalate (DIBP) comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Signed for and on behalf of

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Marry Ma

Approved Signatory

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

3rd Building, No.889 Yishan Road Xuhui District, Shanghai China 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679

中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

t HL (86-21) 61402594 f HL (86-21)61156899

www.sgsgroup.com.cn e sgs.china@sgs.com

No. SHAEC1616358403

Date: 01 Aug 2016

Page 2 of 23

Test Results:

Test Part Description:

Specimen No. SGS Sample ID Description SHA16-163584.003 SN₁ Black solid block

Remarks:

(1) 1 mg/kg = 0.0001%

(2) MDL = Method Detection Limit

(3) ND = Not Detected (< MDL)

(4) "-" = Not Regulated

RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU

- Test Method: (1) With reference to IEC 62321-5:2013, determination of Cadmium by ICP-OES.
 - (2) With reference to IEC 62321-5:2013, determination of Lead by ICP-OES.
 - (3) With reference to IEC 62321-4:2013, determination of Mercury by ICP-OES.
 - (4) With reference to IEC 62321:2008, determination of Hexavalent Chromium by Colorimetric Method using UV-Vis.
 - (5) With reference to IEC 62321-6:2015, determination of PBBs and PBDEs by GC-MS.
 - (6) With reference to IEC 62321-8 Ed.1.0 (111/321/CD), determination of phthalates by GC-MS.

Test Item(s)	<u>Limit</u>	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Cadmium (Cd)	100	mg/kg	2	ND
Lead (Pb)	1000	mg/kg	2	ND
Mercury (Hg)	1000	mg/kg	2	ND
Hexavalent Chromium (Cr(VI))	1000	mg/kg	2	ND
Sum of PBBs	1000	mg/kg	-	ND
Monobromobiphenyl	-	mg/kg	5	ND
Dibromobiphenyl	-	mg/kg	5	ND
Tribromobiphenyl	-	mg/kg	5	ND
Tetrabromobiphenyl	-	mg/kg	5	ND
Pentabromobiphenyl	-	mg/kg	5	ND
Hexabromobiphenyl	-	mg/kg	5	ND
Heptabromobiphenyl	-	mg/kg	5	ND
Octabromobiphenyl	-	mg/kg	5	ND
Nonabromobiphenyl	-	mg/kg	5	ND
Decabromobiphenyl	-	mg/kg	5	ND
Sum of PBDEs	1000	mg/kg	-	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443

t E&E (86-21) 61402553 f E&E (86-21)64953679

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

t HL (86-21) 61402594 f HL (86-21) 61156899

Test Report	No. SHAEC16163584	03	Date: (01 Aug 2016	Page 3 of 23
Test Item(s)	<u>Limit</u>	<u>Unit</u>	<u>MDL</u>	<u>003</u>	
Monobromodiphenyl ether	-	mg/kg	5	ND	
Dibromodiphenyl ether	-	mg/kg	5	ND	
Tribromodiphenyl ether	-	mg/kg	5	ND	
Tetrabromodiphenyl ether	-	mg/kg	5	ND	
Pentabromodiphenyl ether	-	mg/kg	5	ND	
Hexabromodiphenyl ether	-	mg/kg	5	ND	
Heptabromodiphenyl ether	-	mg/kg	5	ND	
Octabromodiphenyl ether	-	mg/kg	5	ND	
Nonabromodiphenyl ether	-	mg/kg	5	ND	
Decabromodiphenyl ether	-	mg/kg	5	ND	
Di-butyl Phthalate (DBP)	1000	mg/kg	50	ND	
Benzyl Butyl Phthalate (BBP)	1000	mg/kg	50	ND	
Di-2-Ethyl Hexyl Phthalate (DEHP)	1000	mg/kg	50	ND	
Diisobutyl Phthalates (DIBP)	1000	mg/kg	50	ND	

Notes:

- (1) The maximum permissible limit is quoted from RoHS Directive (EU) 2015/863.
- (2) On 4 June 2015, Commission Directive (EU) 2015/863 was published in the Official Journal of the European Union (OJEU) to include the phthalates BBP, DBP, DEHP and DIBP into ANNEX II of the Rohs Recast Directive. The new law restricts each phthalate to no more than 0.1% in each homogeneous material of an electrical product.
- (3) The restriction of DEHP, BBP, DBP and DIBP shall apply to medical devices, including in vitro medical devices, and monitoring and control instruments, including industrial monitoring and control instruments, from 22 July 2021.
- (4) The restriction of DEHP, BBP, DBP and DIBP shall not apply to cables or spare parts for the repair, the reuse, the updating of functionalities or upgrading of capacity of EEE placed on the market before 22 July 2019, and of medical devices, including in vitro medical devices, and monitoring and control instruments, including industrial monitoring and control instruments, placed on the market before 22 July 2021.
- (5) The restriction of DEHP, BBP and DBP shall not apply to toys which are already subject to the restriction of DEHP, BBP and DBP through entry 51 of Annex XVII to Regulation (EC) No 1907/2006.

<u>Halogen</u>

Test Method: With reference to EN 14582: 2007, analysis was performed by Ion Chromatograph (IC).

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Fluorine (F)	mg/kg	50	ND
Chlorine (CI)	mg/kg	50	ND
Bromine (Br)	mg/kg	50	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is sused defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, *Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, ***Company Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443

3rd Building, No.889 Yishan Road Xuhui District, Shanghai China 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679

中国・上海・徐汇区宜山路889号3号楼 邮编: 200233 tHL(86-21)61402594 fHL(86-21)61156899

www.sgsgroup.com.cn

e sgs.china@sgs.com

No. SHAEC1616358403

Date: 01 Aug 2016

Page 4 of 23

Test Item(s)
Iodine (I)

<u>Unit</u> mg/kg MDL 50 *003* ND

Element(s)

Test Method: With reference to US EPA 3052:1996, analysis was performed by ICP-OES.

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Beryllium (Be)	mg/kg	5	ND
Antimony (Sb)	mg/kg	10	ND

Polychlorinated Naphthalenes (PCNs)

Test Method: With reference to US EPA 8081B: 2007, analysis was performed by GC-MS

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
2-Chlorinated Naphthalene	mg/kg	5	ND
1,4-Dichlorinated Naphthalene	mg/kg	5	ND
1,5-Dichlorinated Naphthalene	mg/kg	5	ND
1,2-Dichlorinated Naphthalene	mg/kg	5	ND
1,8-Dichlorinated Naphthalene	mg/kg	5	ND
1,2,3-Trichlorinated Naphthalene	mg/kg	5	ND
1,2,3,4-Tetrachlorinated Naphthalene	mg/kg	5	ND
1,2,3,4,6-Pentachlorinated Naphthalene	mg/kg	5	ND
Octa-chlorinaed Naphthalene	mg/kg	5	ND
1-Chlorinated Naphthalene	mg/kg	5	ND

Organic-tin compounds

Test Method: With reference to ISO 17353: 2004 with carbamate, analysis was performed by GC-MS.

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Tributyl tin (TBT)	mg/kg	0.02	ND
Tripropyltin (TPT)	mg/kg	0.02	ND
Tributyl Tin Oxide (TBTO) ◆	mg/kg	0.02	ND
Dibutyl tin (DBT)	mg/kg	0.02	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rd Building,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899 www.sgsgroup.com.cn e sgs.china@sgs.com

Test Report No. SHAEC1616358403 Date: 01 Aug 2016 Page 5 of 23

 Test Item(s)
 Unit
 MDL
 003

 Dioctyl tin (DOT)
 mg/kg
 0.02
 ND

Notes:

(1) ◆ = TBTO are back calculated based on the worst-case scenario of TBT.

Red Phosphorus

Test Method: SGS in house method(SHTC- CHEM- SOP -342-T), Analysis was performed by ICP-OES and

Pyrolysis-GC/MS

 Test Item(s)
 Unit
 MDL
 003

 Red Phosphorus
 mg/kg
 500
 ND

Short-chain Chlorinated Paraffin (SCCP)

Test Method: With reference to US EPA 3550C: 2007, analysis was performed by GC-ECD / GC-NCI-MS

Test Item(s) Unit MDL 003
Short-chain Chlorinated Paraffin (SCCP) (C₁₀-C₁₃) mg/kg 50 ND

Tetrabromobisphenol A (TBBP-A)

Test Method: With reference to US EPA 3540C: 1996, analysis was performed by GC-MS.

Test Item(s) Unit MDL 003
Tetrabromobisphenol A (TBBP-A) mg/kg 10 ND

PVC (Polyvinyl chloride)

Test Method: In-house method (SHTC-CHEM-SOP-115-T), analysis was performed by FTIR/HATR.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions or Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is sussed defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CND. Doccheck@sgs.com/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Conditions/en/Terms-and-Condi

or email: <u>CN.Doccheck@sgs.com</u> 3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 www.sgsgroup.com.cn 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233 t HL (86–21) 61402594 f HL (86–21)61156899 e sgs.china@sgs.com

No. SHAEC1616358403

Date: 01 Aug 2016

Page 6 of 23

Test Item(s)

CAS NO.

Unit MI

MDL 003

PVC

9002-86-2

- Negative

Notes:

(1) Negative=Undetectable, Positive=Detectable

Hexabromocyclododecane (HBCDD)

Test Method: With reference to IEC 62321:2008, analysis was performed by GC-MS.

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Hexabromocyclododecane (HBCDD)	mg/kg	10	ND

Polychlorinated Terphenyls (PCTs)

Test Method: With reference to US EPA 8082A: 2007, analysis was performed by GC-MS

Test Item(s)	<u>Unit</u>	<u>MDL</u>	<u>003</u>
Aroclor 5432	mg/kg	5	ND
Aroclor 5442	mg/kg	5	ND

Phthalates

Test Method: With reference to EN 14372:2004, analysis was performed by GC-MS.

Test Item(s)	CAS NO.	<u>Unit</u>	MDL	003
Diisononyl Phthalate (DINP)	28553-12-0	%	0.01	ND
	/68515-48-0			
Di-n-octyl Phthalate (DNOP)	117-84-0	%	0.003	ND
Diisodecyl Phthalate (DIDP)	26761-40-0	%	0.01	ND
	/68515-49-1			
Dimethyl Phthalate (DMP)	131-11-3	%	0.003	ND
Diethyl Phthalate (DEP)	84-66-2	%	0.003	ND
Di-n-pentyl Phthalates (DnPP)	131-18-0	%	0.003	ND
Dicyclohexyl Phthalate (DCHP)	84-61-7	%	0.003	ND
Diphenyl Phthalate (DPhP)	84-62-8	%	0.003	ND
Dibenzyl Phthalate (DBzP)	523-31-9	%	0.003	ND
Diisooctyl Phthalate (DiOP)	27554-26-3	%	0.01	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rd Building, No. 889 Yishan Road Xuhui District, Shanghai China 200233 t E&E (86–21)

中国·上海·徐汇区宜山路889号3号楼 邮编: 200233

t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899 www.sgsgroup.com.cn e sgs.china@sgs.com

Test Report	No. SHAEC1616358403	Date: 01 Aug	2016	Page 7 o	of 23
Test Item(s)	<u>C</u>	AS NO.	<u>Unit</u>	MDL	003
Dipropyl Phthalate (DPrP)	13	1-16-8	%	0.003	ND
Dinonyl Phthalate (DNP)	84	4-76-4	%	0.003	ND
Di-n-hexyl Phthalate (DnHP)	84	4-75-3	%	0.003	ND
Diisoheptyl phthalate (DIHP)	718	88-89-6	%	0.01	ND
Bis(2-methoxyethyl) Phthalate (DMEF	P) 11	7-82-8	%	0.003	ND
Diisopentylphthalate (DIPP)	60	5-50-5	%	0.003	ND
1,2-Benzenedicarboxylic acid, di-C7-	11-branched and 685	15-42-4	%	0.01	ND

Notes:

- DINP, DNOP, DIDP Reference information: Entry 52 of Regulation (EC) No 552/2009 amending Annex XVII of REACH Regulation (EC) No 1907/2006 (previously restricted under Directive 2005/84/EC).
 - i) Shall not be used as substances or in mixtures, in concentrations greater than 0.1 % by weight of the plasticised material, in toys and childcare articles which can be placed in the mouth by children.
 - ii) Such toys and childcare articles containing these phthalates in a concentration greater than 0.1 % by weight of the plasticised material shall not be placed on the market.

Please refer to Regulation (EC) No 552/2009 to get more detail information

Polycyclic aromatic hydrocarbons (PAHs)

Test Method: With reference to AfPS GS 2014:01 PAK, analysis was performed by GC-MS.

Test Item(s)	<u>Unit</u>	<u>MDL</u>	003
Benzo(a)pyrene(BaP)	mg/kg	0.1	ND
Benzo(e)pyrene(BeP)	mg/kg	0.1	ND
Benzo(a)anthracene(BaA)	mg/kg	0.1	ND
Benzo(b)fluoranthene(BbF)	mg/kg	0.1	ND
Benzo(j)fluoranthene(BjF)	mg/kg	0.1	ND
Benzo(k)fluoranthene(BkF)	mg/kg	0.1	ND
Chrysene(CHR)	mg/kg	0.1	ND
Dibenzo(a,h)anthracene(DBA)	mg/kg	0.1	ND
Benzo(g,h,i)perylene(BPE)	mg/kg	0.1	ND
Indeno(1,2,3-c,d)pyrene(IPY)	mg/kg	0.1	ND
Acenaphthylene(ANY)	mg/kg	0.1	ND
Acenaphthene(ANA)	mg/kg	0.1	ND
Fluorene(FLU)	mg/kg	0.1	ND
Phenanthrene(PHE)	mg/kg	0.1	ND
Pyrene(PYR)	mg/kg	0.1	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is sused defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, *Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, ***Company Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

3"Bulding.No.889 Yishan Road Xuhui District.Shanghai China 200233 t E&E (86-21) 61402553 f E&E (86-21)64953679 www.sgsgroup.com.cn

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

t HL (86-21) 61402594 f HL (86-21) 61156899

www.sgsgroup.com.cn e sgs.china@sgs.com

Test Report	No. SHAEC1616358403	Date: 01 Aug 2	2016	Page 8 c	of 23
Test Item(s)			<u>Unit</u>	MDL	003
Anthracene(ANT)			mg/kg	0.1	ND
Fluoranthene(FLT)			mg/kg	0.1	ND
Sum of Acenaphthylene, Acenaph	thene, Fluorene, Phenanthrene, Pyrene,		mg/kg	-	ND
Anthracene, Fluoranthene					
Naphthalene(NAP)			mg/kg	0.1	ND
Sum of 18 PAHs			mg/kg	-	ND

AfPS (German commission for Product Safety): GS PAHs requirements

Parameter	Category 1	Catego	ory 2	Category	3
	Material indented to be put in the mouth or toys with intended skin contact (longer than 30 s).	Materials not under catego foreseeable o skin for longe (long-term ski frequent cont	ry 1 with contact to r than 30 s n) or	Materials not falling category 1 or 2 with foreseeable contact less than 30 s (short contact).	to skin for
		Toy under 2009/48/EC	Other products under ProdSG	Toy under 2009/48/EC	Other products under ProdSG
Benzo(a)pyrene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(e)pyrene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(a)anthracene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(b)fluoranthene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(j)fluoranthene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(k)fluoranthene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Chrysene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Dibenzo(a,h)anthracene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Benzo(g,h,i)perylene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Indeno(I,2,3-cd)pyrene mg/kg	< 0.2	< 0.2	< 0.5	< 0.5	< 1
Acenaphthylene, Acenaphthene, fluorene,phenanthrene, pyrene, anthracene, fluoranthene, mg/kg	< 1 Sum	< 5 Sum	< 10 Sum	< 20 Sum	< 50 Sum
Naphthalene, mg/kg	< 1	< 2		< 10	
Sum of 18 PAHs	<1	< 5	< 10	< 20	< 50

PFOS (Perfluorooctane Sulfonates) and Perfluorooctanoic Acid (PFOA)

Test Method: With reference to CEN/TS 15968:2010, analysis was performed by LC-MS.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

Test Report	No. SHAEC1616358403	Date: 01 Aug 2	2016	Page 9	of 23
Test Item(s)		<u>Limit</u>	<u>Unit</u>	<u>MDL</u>	003
Perfluorooctane Sulfonates (PFOS)^		1000	mg/kg	10	ND
Perfluorooctanoic Acid (PFOA)		-	mg/kg	10	ND

Notes:

- (1) Max. limit specified by commission regulation (EU) No. 757/2010 amending regulation (EC) No 850/2004.
- (2) ^ PFOS refer to Perfluoroctanesulfonic acid and its derivatives including Perfluoroctanesulfonic acid, Perfluoroctane sulfonamide, N-Methylperfluoroctane sulfonamide, N-Ethylperfluoroctane sulfonamidoethanol and N-Ethylperfluoroctane sulfonamidoethanol.

Polychlorinated Biphenyls (PCBs)

Test Method: With reference to US EPA 8082A: 2007, analysis was performed by GC-MS

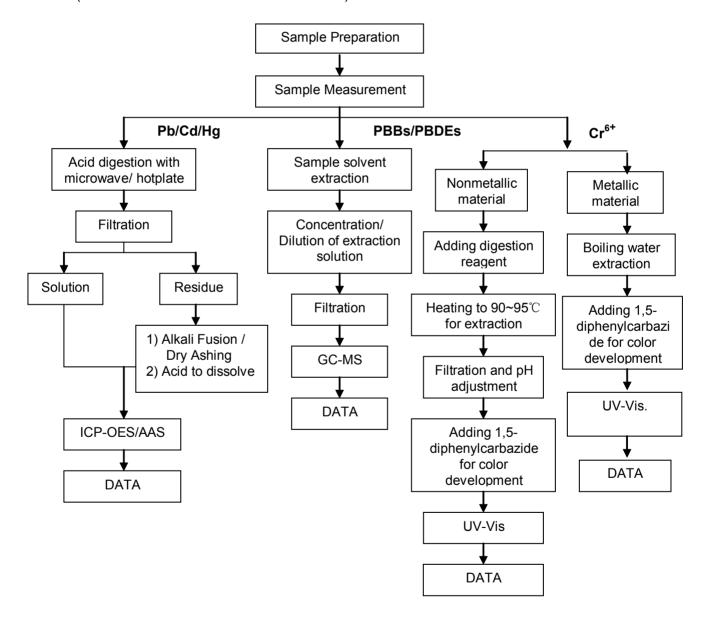
Test Item(s)	CAS NO.	Unit	MDL	003
2,4,4'-Trichlorobiphenyl (PCB 28)	7012-37-5	mg/kg	0.5	ND
2,2',5,5'-Tetrachloro-biphenyl (PCB 52)	35693-99-3	mg/kg	0.5	ND
2,2',4,5,5'-Pentachloro-biphenyl (PCB 101)	37680-73-2	mg/kg	0.5	ND
2,3',4,4',5-Pentachlorobiphenyl (PCB 118)	31508-00-6	mg/kg	0.5	ND
2,2',3,4,4',5'-Hexachloro-biphenyl (PCB 138)	35065-28-2	mg/kg	0.5	ND
2,2',4,4',5,5'-Hexachloro-biphenyl (PCB 153)	35065-27-1	mg/kg	0.5	ND
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)	35065-29-3	mg/kg	0.5	ND

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/rerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is sussed defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document one one exocentate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443.

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 10 of 23

ATTACHMENTS

RoHS Testing Flow Chart

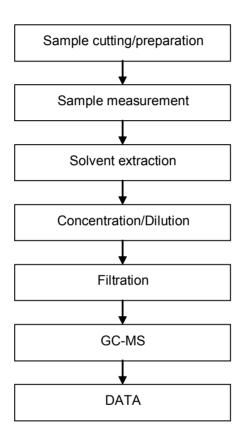
- 1) Name of the person who made testing: Rony Chen/Gary Xu/Sean Li/Selina Song
- 2) Name of the person in charge of testing: Jan Shi/Luna Xu/Jessy Huang/Stone Chen
- 3) These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ and PBBs/PBDEs test method excluded)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction susues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention:To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899 www.sgsgroup.com.cn e sgs.china@sgs.com

No. SHAEC1616358403


Date: 01 Aug 2016

Page 11 of 23

ATTACHMENTS

Phthalates Testing Flow Chart

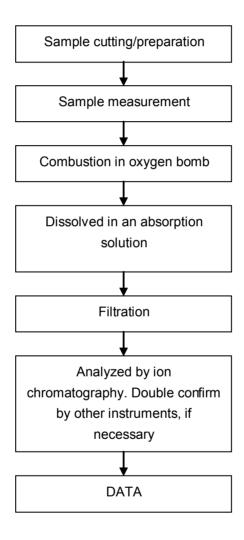
- 1) Name of the person who made testing: Sherlock Gao
- 2) Name of the person in charge of testing: Jessy Huang

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899

No. SHAEC1616358403


Date: 01 Aug 2016

Page 12 of 23

ATTACHMENTS

Halogen Testing (oxygen bomb) Flow Chart

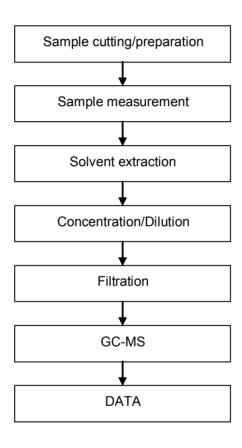
- 1) Name of the person who made testing: Kevin Xu
- 2) Name of the person in charge of testing: Sisily Yin

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899

No. SHAEC1616358403


Date: 01 Aug 2016

Page 13 of 23

ATTACHMENTS

PAHs Testing Flow Chart

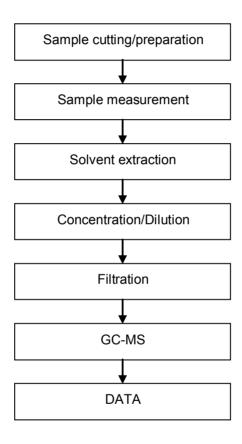
- 1) Name of the person who made testing: Alex Deng
- 2) Name of the person in charge of testing: Jessy Huang

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐江区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 14 of 23

ATTACHMENTS

HBCDD Testing Flow Chart

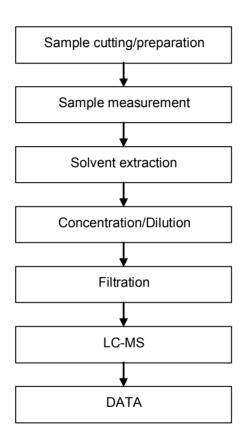
- 1) Name of the person who made testing: Gary Xu
- 2) Name of the person in charge of testing: Jessy Huang

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 15 of 23

ATTACHMENTS

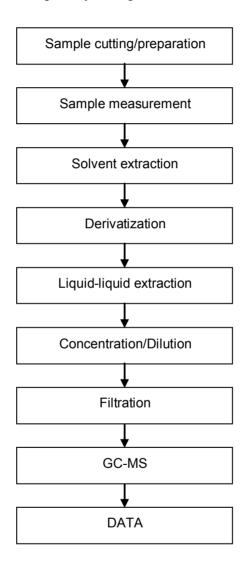
PFOS/PFOA Testing Flow Chart

- 1) Name of the person who made testing: Jane Yang
- 2) Name of the person in charge of testing: Myra Ma

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

No. SHAEC1616358403


Date: 01 Aug 2016

Page 16 of 23

ATTACHMENTS

TBBP-A Testing Flow Chart

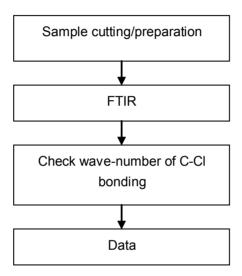
- 1) Name of the person who made testing: Gary Xu
- 2) Name of the person in charge of testing: Jessy Huang

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 17 of 23

ATTACHMENTS

PVC Testing Flow Chart

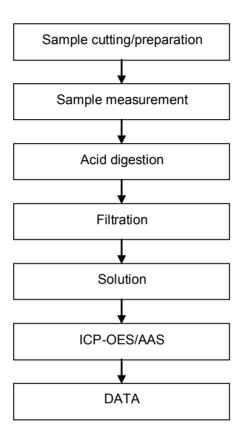
- 1) Name of the person who made testing: Jessica Qin
- 2) Name of the person in charge of testing: Linda Li

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 18 of 23

ATTACHMENTS

Elements Testing Flow Chart

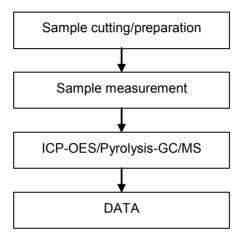
- 1) Name of the person who made testing: Rony Chen/Selina song
- 2) Name of the person in charge of testing: Luna Xu/Jan Shi

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐江区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 19 of 23

ATTACHMENTS

Red Phosphorus Testing Flow Chart

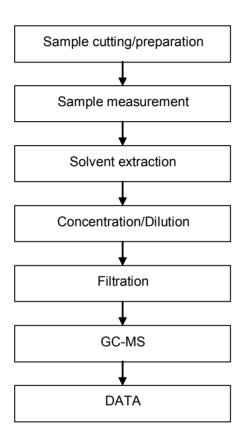
- 1) Name of the person who made testing: Jessica Qin
- 2) Name of the person in charge of testing: Linda Li

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 20 of 23

ATTACHMENTS

PCB/ PCT/ PCN Testing Flow Chart

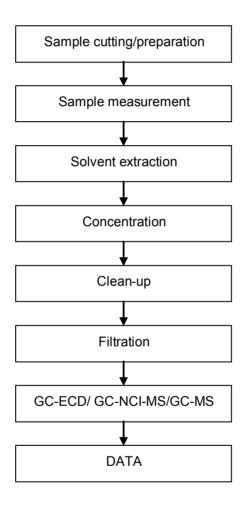
- 1) Name of the person who made testing: Jenny Zhang
- 2) Name of the person in charge of testing: Zirco Yu

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com"

3¹⁴Building,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 21 of 23

ATTACHMENTS

SCCP Testing Flow Chart

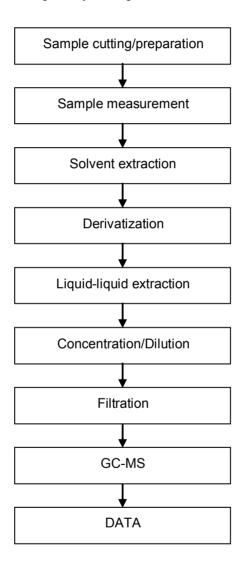
- 1) Name of the person who made testing: Jenny Zhang
- 2) Name of the person in charge of testing: Zirco Yu

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403


Date: 01 Aug 2016

Page 22 of 23

ATTACHMENTS

Organotin Testing Flow Chart

- 1) Name of the person who made testing: Cara Cai
- 2) Name of the person in charge of testing: Jessy Huang

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国・上海・徐汇区宜山路889号3号楼 邮编: 200233

No. SHAEC1616358403

Date: 01 Aug 2016

Page 23 of 23

Sample photo:

SGS authenticate the photo on original report only

*** End of Report ***

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@gs_com"

3rdBuilding,No.889 Yishan Road Xuhui District,Shanghai China 200233 中国·上海·徐汇区宜山路889号3号楼 邮编: 200233 t E&E (86–21) 61402553 f E&E (86–21)64953679 t HL (86–21) 61402594 f HL (86–21)61156899

Reliability Testing Summary Report

Date: 2017/05/12 Document No.: SK17 -05- 101

High Temp Reverse Bias HTSL High Temperature Storage Life PCT Pressure Cooker Test TCT Temperature Cycle Test THT			Sample Numbers	Allow Fall Numbers	Fall Numbers	Result					
High Temperature Storage Life PCT Pressure Cooker Test TCT Temperature Cycle Test THT High Temperature High Humidity SMG2305-C SMG2305-C SMG2305-C	150° C $\pm 5^{\circ}$ C, 80% VR, T = 1000 hrs		77	0	0	ACC					
Pressure Cooker Test TCT Temperature Cycle Test THT High Temperature High Humidity SMG2305-C SMG2305-C SMG2305-C	150°C, T = 1000 hrs		77	0	0	ACC					
Temperature Cycle Test THT High Temperature High Humidity SMG2305-C SMG2305-C	Pressure Cooker SMG2305-C 121 C, 29./PSIG,										
High Temperature High Humidity SMG2305-C	Temperature Cycle SMG2305-C 150°C/30min, 77 0 0										
	85 ± 2°C, RH=85±5%, 1000 hrs		77	0	0	ACC					
H3TRB High Temper High Humidity Reverse Bies Test SMG2305-C	85 ± 2°C, RH=85±5%, 80% VR, 1000 hrs		77	0	0	ACC					
Resistance to SMG2305-C SMG2305-C	270℃±5℃, 7Sec +2/-0Sec		77	0	0	ACC					
Judgment:											
■ qualified □ unqualified Testing Start Date: 2017.03.20 Tes		5.12									
Tester: King Huang Approval: P		-									

High Temperature Reverse Bias Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \hspace*{0.2cm} ; \hspace*{0.2cm} IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 150° C $\pm 5^{\circ}$ C, 80% VR, T = 1000 hrs

Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A108

Operator: Leo Hsia

		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	RDS(ON)
1	-31.08V	-0.004uA	45.2mΩ	-31.00V	-0.003uA	43.7 m Ω
2	-30.84V	-0.003uA	46.5mΩ	-31.66V	-0.001uA	45.3mΩ
3	-30.88V	-0.003uA	$44.2 \mathrm{m}\Omega$	-31.08V	-0.002uA	47.5 m Ω
4	-31.00V	-0.002uA	45.3mΩ	-31.68V	-0.003uA	44.3mΩ
5	-31.58V	-0.002uA	45.5mΩ	-31.56V	-0.003uA	47.8 m Ω
6	-31.61V	-0.001uA	43.5mΩ	-31.39V	-0.003uA	44.2mΩ
7	-31.25V	-0.002uA	45.4mΩ	-31.75V	-0.003uA	44.1mΩ
8	-31.51V	-0.002uA	43.7mΩ	-30.93V	-0.002uA	45.9mΩ
9	-31.22V	-0.001uA	45.5mΩ	-31.59V	-0.001uA	44.3mΩ
10	-30.91V	-0.003uA	43.8mΩ	-31.44V	-0.002uA	43.5 m Ω
11	-30.64V	-0.003uA	$47.7 \mathrm{m}\Omega$	-31.63V	-0.003uA	$44.4 \mathrm{m}\Omega$
12	-31.47V	-0.002uA	$44.8 \mathrm{m}\Omega$	-30.69V	-0.003uA	45.9mΩ
13	-30.66V	-0.003uA	45.3mΩ	-30.87V	-0.003uA	46.7mΩ
14	-30.96V	-0.003uA	45.8 m Ω	-31.12V	-0.003uA	44.5mΩ
15	-31.30V	-0.003uA	43.8mΩ	-31.63V	-0.003uA	46.1mΩ
16	-31.10V	-0.004uA	46.3mΩ	-31.32V	-0.001uA	46.9mΩ
17	-31.60V	-0.002uA	46.9mΩ	-31.23V	-0.001uA	46.3mΩ
18	-30.65V	-0.003uA	$44.4 \mathrm{m}\Omega$	-30.66V	-0.001uA	44.4mΩ
19	-31.22V	-0.003uA	44.9mΩ	-31.71V	-0.002uA	43.8mΩ
20	-31.02V	-0.002uA	45.5mΩ	-31.10V	-0.002uA	47.1mΩ
21	-31.60V	-0.003uA	44.6mΩ	-31.71V	-0.002uA	45.0mΩ
22	-31.65V	-0.001uA	43.9mΩ	-30.98V	-0.002uA	44.1mΩ
23	-31.73V	-0.001uA	45.9mΩ	-30.83V	-0.002uA	45.9mΩ
24	-30.92V	-0.003uA	43.9mΩ	-31.00V	-0.003uA	$47.2 \mathrm{m}\Omega$
25	-30.84V	-0.001uA	$44.3 \mathrm{m}\Omega$	-30.84V	-0.002uA	45.9mΩ
26	-31.49V	-0.001uA	$44.0 \mathrm{m}\Omega$	-30.73V	-0.002uA	46.9mΩ
27	-30.65V	-0.002uA	45.8mΩ	-31.67V	-0.001uA	46.2mΩ
28	-31.49V	-0.003uA	46.0mΩ	-31.54V	-0.002uA	45.1mΩ
29	-31.71V	-0.002uA	47.9mΩ	-31.36V	-0.003uA	44.6mΩ

High Temperature Reverse Bias Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 150° C $\pm 5^{\circ}$ C, 80% VR, T = 1000 hrs

Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A108

Operator: Leo Hsia

Test Result. PASS

		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
30	-31.48V	-0.002uA	$46.0 \mathrm{m}\Omega$	-31.37V	-0.001uA	$44.3 \mathrm{m}\Omega$
31	-31.34V	-0.001uA	$43.8 \mathrm{m}\Omega$	-31.07V	-0.001uA	$44.1 \text{m}\Omega$
32	-30.81V	-0.003uA	$45.8 \mathrm{m}\Omega$	-30.82V	-0.003uA	$47.0 \mathrm{m}\Omega$
33	-31.30V	-0.001uA	$45.9 \mathrm{m}\Omega$	-30.83V	-0.003uA	$45.0 \mathrm{m}\Omega$
34	-31.60V	-0.001uA	43.6 m Ω	-31.73V	-0.001uA	$44.7 \mathrm{m}\Omega$
35	-31.53V	-0.002uA	$46.9 \mathrm{m}\Omega$	-30.73V	-0.002uA	$47.6 \mathrm{m}\Omega$
36	-30.89V	-0.003uA	$46.3 \mathrm{m}\Omega$	-31.60V	-0.001uA	$47.1 \mathrm{m}\Omega$
37	-31.75V	-0.002uA	$45.8 \mathrm{m}\Omega$	-30.75V	-0.003uA	$43.7 \mathrm{m}\Omega$
38	-30.73V	-0.002uA	45.6 m Ω	-30.98V	-0.002uA	$43.6 \mathrm{m}\Omega$
39	-31.54V	-0.003uA	$46.7 \mathrm{m}\Omega$	-30.72V	-0.002uA	$45.9 \mathrm{m}\Omega$
40	-31.58V	-0.002uA	$46.5 \mathrm{m}\Omega$	-31.19V	-0.003uA	$45.2 \mathrm{m}\Omega$
41	-30.81V	-0.001uA	46.8mΩ	-31.54V	-0.004uA	$44.3 \mathrm{m}\Omega$
42	-31.65V	-0.003uA	$45.4 \mathrm{m}\Omega$	-31.35V	-0.002uA	47.6 m Ω
43	-31.43V	-0.001uA	$47.7 \mathrm{m}\Omega$	-31.78V	-0.002uA	$46.7 \mathrm{m}\Omega$
44	-30.89V	-0.002uA	$45.4 \mathrm{m}\Omega$	-31.56V	-0.002uA	$46.0 \mathrm{m}\Omega$
45	-31.45V	-0.002uA	$46.9 \mathrm{m}\Omega$	-30.85V	-0.003uA	$45.7 \mathrm{m}\Omega$
46	-30.75V	-0.003uA	$46.2 \mathrm{m}\Omega$	-30.74V	-0.003uA	$44.1 \text{m}\Omega$
47	-30.80V	-0.004uA	$47.7 \mathrm{m}\Omega$	-30.65V	-0.003uA	$44.8 \mathrm{m}\Omega$
48	-30.71V	-0.002uA	$47.1 \mathrm{m}\Omega$	-31.29V	-0.003uA	$43.5 \mathrm{m}\Omega$
49	-31.13V	-0.003uA	43.5 m Ω	-31.09V	-0.002uA	$44.7 \mathrm{m}\Omega$
50	-31.77V	-0.002uA	$47.1 \mathrm{m}\Omega$	-30.81V	-0.001uA	45.3 m Ω
51	-31.28V	-0.003uA	$46.8 \mathrm{m}\Omega$	-30.70V	-0.002uA	$44.8 \mathrm{m}\Omega$
52	-31.35V	-0.002uA	$44.2 \mathrm{m}\Omega$	-31.11V	-0.002uA	$46.9 \mathrm{m}\Omega$
53	-31.68V	-0.001uA	$47.4 \mathrm{m}\Omega$	-31.28V	-0.002uA	$47.3 \mathrm{m}\Omega$
54	-31.33V	-0.003uA	$45.8 \mathrm{m}\Omega$	-30.86V	-0.001uA	$46.9 \mathrm{m}\Omega$
55	-31.51V	-0.002uA	46.4mΩ	-31.64V	-0.003uA	$46.5 \mathrm{m}\Omega$
56	-31.40V	-0.002uA	45.1mΩ	-30.69V	-0.002uA	45.7 m Ω
57	-30.90V	-0.004uA	$47.0 \mathrm{m}\Omega$	-31.22V	-0.001uA	$43.7 \mathrm{m}\Omega$
58	-31.05V	-0.001uA	45.3mΩ	-30.89V	-0.001uA	$43.8 \mathrm{m}\Omega$

High Temperature Reverse Bias Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; IDSS $< -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 150° C $\pm 5^{\circ}$ C, 80% VR, T = 1000 hrs

Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A108

Operator: Leo Hsia

Test Result: PASS

Test Result: P	A33					
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
59	-31.37V	-0.001uA	43.6 m Ω	-30.92V	-0.003uA	$44.0 \mathrm{m}\Omega$
60	-30.89V	-0.002uA	$46.0 \mathrm{m}\Omega$	-30.84V	-0.003uA	$44.0 \mathrm{m}\Omega$
61	-31.42V	-0.003uA	$45.1 \mathrm{m}\Omega$	-31.19V	-0.002uA	$47.1 \mathrm{m}\Omega$
62	-31.08V	-0.002uA	$46.8 \mathrm{m}\Omega$	-31.17V	-0.001uA	$46.9 \mathrm{m}\Omega$
63	-31.15V	-0.003uA	$46.3 \mathrm{m}\Omega$	-30.70V	-0.002uA	$46.9 \mathrm{m}\Omega$
64	-30.93V	-0.002uA	45.3 m Ω	-31.54V	-0.001uA	$47.8 \mathrm{m}\Omega$
65	-31.17V	-0.002uA	$45.4 \mathrm{m}\Omega$	-30.83V	-0.002uA	$47.6 \mathrm{m}\Omega$
66	-31.49V	-0.003uA	$44.2 \mathrm{m}\Omega$	-31.09V	-0.001uA	$47.4 \mathrm{m}\Omega$
67	-30.67V	-0.003uA	$45.9 \mathrm{m}\Omega$	-31.20V	-0.003uA	$47.9 \mathrm{m}\Omega$
68	-31.04V	-0.001uA	$47.7 \mathrm{m}\Omega$	-31.22V	-0.002uA	$45.0 \mathrm{m}\Omega$
69	-31.15V	-0.003uA	45.5 m Ω	-30.90V	-0.001uA	$47.6 \mathrm{m}\Omega$
70	-30.63V	-0.002uA	$43.9 \mathrm{m}\Omega$	-31.71V	-0.001uA	$44.5 \mathrm{m}\Omega$
71	-31.17V	-0.001uA	45.5 m Ω	-31.62V	-0.003uA	$46.0 \mathrm{m}\Omega$
72	-31.19V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.75V	-0.003uA	$47.3 \mathrm{m}\Omega$
73	-31.42V	-0.002uA	$46.3 \mathrm{m}\Omega$	-31.08V	-0.002uA	$46.1 \mathrm{m}\Omega$
74	-31.65V	-0.002uA	$47.3 \mathrm{m}\Omega$	-30.63V	-0.004uA	$46.4 \mathrm{m}\Omega$
75	-30.84V	-0.002uA	$44.8 \mathrm{m}\Omega$	-30.88V	-0.003uA	$43.8 \mathrm{m}\Omega$
76	-31.19V	-0.003uA	$45.0 \mathrm{m}\Omega$	-31.45V	-0.001uA	$45.5 \mathrm{m}\Omega$
77	-31.47V	-0.002uA	$44.6 \mathrm{m}\Omega$	-31.31V	-0.002uA	$46.6 \mathrm{m}\Omega$

Made By: Leo Hsia Approval: Peter Yang

High Temperature Storage Life Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 150°C, 1000Hrs Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A103

Operator: Leo Hsia

Test Pegult. DACC

Test Result: 1	PASS			1		
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
1	-30.99V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.11V	-0.001uA	$44.8 \mathrm{m}\Omega$
2	-31.20V	-0.003uA	$46.1 \mathrm{m}\Omega$	-30.73V	-0.001uA	$47.6 \mathrm{m}\Omega$
3	-31.10V	-0.002uA	$44.0 \mathrm{m}\Omega$	-30.68V	-0.003uA	$43.7 \mathrm{m}\Omega$
4	-31.66V	-0.003uA	$47.4 \mathrm{m}\Omega$	-31.69V	-0.002uA	$44.8 \mathrm{m}\Omega$
5	-31.30V	-0.003uA	$46.5 \mathrm{m}\Omega$	-31.61V	-0.002uA	$46.0 \mathrm{m}\Omega$
6	-31.38V	-0.002uA	$47.6 \mathrm{m}\Omega$	-30.79V	-0.003uA	$44.0 \mathrm{m}\Omega$
7	-31.36V	-0.003uA	$45.0 \mathrm{m}\Omega$	-30.67V	-0.002uA	$44.2 \mathrm{m}\Omega$
8	-31.72V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.13V	-0.003uA	$44.9 \mathrm{m}\Omega$
9	-31.58V	-0.003uA	$43.5 \mathrm{m}\Omega$	-31.50V	-0.002uA	$44.0 \mathrm{m}\Omega$
10	-31.44V	-0.001uA	$46.7 \mathrm{m}\Omega$	-30.78V	-0.002uA	$45.7 \mathrm{m}\Omega$
11	-31.55V	-0.002uA	$45.9 \mathrm{m}\Omega$	-31.21V	-0.001uA	$46.4 \mathrm{m}\Omega$
12	-30.89V	-0.001uA	$46.2 \mathrm{m}\Omega$	-31.18V	-0.003uA	$43.9 \mathrm{m}\Omega$
13	-30.69V	-0.003uA	$45.6 \mathrm{m}\Omega$	-30.83V	-0.002uA	$47.2 \mathrm{m}\Omega$
14	-31.29V	-0.002uA	$46.1 \mathrm{m}\Omega$	-30.92V	-0.003uA	$47.7 \mathrm{m}\Omega$
15	-30.74V	-0.002uA	$46.2 \mathrm{m}\Omega$	-31.11V	-0.002uA	$47.3 \mathrm{m}\Omega$
16	-31.58V	-0.003uA	$44.2 \mathrm{m}\Omega$	-30.63V	-0.003uA	$47.8 \mathrm{m}\Omega$
17	-31.02V	-0.002uA	$47.7 \mathrm{m}\Omega$	-30.94V	-0.003uA	$44.0 \mathrm{m}\Omega$
18	-31.75V	-0.003uA	$47.2 \mathrm{m}\Omega$	-31.47V	-0.001uA	$46.2 \mathrm{m}\Omega$
19	-30.68V	-0.002uA	$46.2 \mathrm{m}\Omega$	-31.42V	-0.003uA	$46.3 \mathrm{m}\Omega$
20	-31.64V	-0.003uA	$47.4 \mathrm{m}\Omega$	-31.65V	-0.001uA	$44.2 \mathrm{m}\Omega$
21	-31.27V	-0.003uA	$47.9 \mathrm{m}\Omega$	-30.90V	-0.002uA	$46.9 \mathrm{m}\Omega$
22	-31.69V	-0.001uA	$46.3 \mathrm{m}\Omega$	-31.28V	-0.002uA	$44.8 \mathrm{m}\Omega$
23	-31.64V	-0.001uA	$46.3 \mathrm{m}\Omega$	-30.96V	-0.002uA	$46.0 \mathrm{m}\Omega$
24	-31.51V	-0.003uA	$45.7 \mathrm{m}\Omega$	-31.38V	-0.001uA	$43.8 \mathrm{m}\Omega$
25	-31.07V	-0.001uA	$47.9 \mathrm{m}\Omega$	-30.92V	-0.001uA	$47.9 \mathrm{m}\Omega$
26	-30.88V	-0.003uA	46.9mΩ	-30.72V	-0.001uA	44.1mΩ
27	-31.62V	-0.003uA	46.1mΩ	-31.64V	-0.003uA	$44.0 \mathrm{m}\Omega$
28	-30.68V	-0.003uA	45.2 m Ω	-31.18V	-0.002uA	47.3 m Ω
29	-31.53V	-0.002uA	$47.2 \mathrm{m}\Omega$	-30.85V	-0.002uA	45.0mΩ

High Temperature Storage Life Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 150°C, 1000Hrs Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A103

Operator: Leo Hsia

		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	RDS(ON)
30	-31.36V	-0.002uA	44.3mΩ	-30.85V	-0.002uA	44.6mΩ
31	-31.71V	-0.003uA	46.4mΩ	-31.28V	-0.002uA	46.9mΩ
32	-31.37V	-0.003uA	43.8mΩ	-31.72V	-0.003uA	48.0mΩ
33	-31.54V	-0.002uA	45.6mΩ	-31.11V	-0.002uA	43.7mΩ
34	-31.63V	-0.002uA	$47.5 \mathrm{m}\Omega$	-30.94V	-0.003uA	43.6mΩ
35	-30.77V	-0.003uA	45.4mΩ	-31.56V	-0.002uA	47.4mΩ
36	-31.32V	-0.003uA	$46.7 \mathrm{m}\Omega$	-31.36V	-0.002uA	47.4mΩ
37	-30.71V	-0.002uA	45.2mΩ	-31.39V	-0.002uA	45.7mΩ
38	-30.82V	-0.001uA	$46.8 \mathrm{m}\Omega$	-30.83V	-0.003uA	47.9mΩ
39	-31.01V	-0.003uA	47.1mΩ	-31.34V	-0.002uA	47.8mΩ
40	-30.95V	-0.003uA	43.5mΩ	-30.99V	-0.003uA	43.7mΩ
41	-30.99V	-0.003uA	$44.0 \mathrm{m}\Omega$	-31.16V	-0.003uA	46.9mΩ
42	-31.42V	-0.003uA	$47.4 \mathrm{m}\Omega$	-30.80V	-0.002uA	47.0mΩ
43	-31.45V	-0.001uA	45.5 m Ω	-31.31V	-0.002uA	47.8mΩ
44	-31.57V	-0.002uA	$46.4 \mathrm{m}\Omega$	-31.01V	-0.003uA	43.7mΩ
45	-31.57V	-0.003uA	44.6mΩ	-30.67V	-0.003uA	44.2mΩ
46	-30.85V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.73V	-0.003uA	43.6mΩ
47	-31.12V	-0.002uA	47.6 m Ω	-30.78V	-0.003uA	45.4mΩ
48	-31.47V	-0.002uA	$46.0 \mathrm{m}\Omega$	-31.18V	-0.001uA	43.6mΩ
49	-31.72V	-0.001uA	$43.9 \mathrm{m}\Omega$	-31.48V	-0.002uA	43.9mΩ
50	-31.31V	-0.003uA	45.2 m Ω	-30.79V	-0.003uA	47.6mΩ
51	-31.23V	-0.001uA	$44.8 \mathrm{m}\Omega$	-30.90V	-0.003uA	47.2mΩ
52	-31.33V	-0.003uA	47.3mΩ	-30.71V	-0.002uA	46.0mΩ
53	-31.55V	-0.002uA	47.3 m Ω	-31.25V	-0.003uA	44.0mΩ
54	-30.92V	-0.002uA	47.1mΩ	-31.14V	-0.001uA	46.1mΩ
55	-30.73V	-0.002uA	$46.0 \mathrm{m}\Omega$	-30.65V	-0.003uA	47.2mΩ
56	-30.81V	-0.001uA	46.8mΩ	-30.65V	-0.002uA	44.3mΩ
57	-31.30V	-0.001uA	43.6mΩ	-30.87V	-0.002uA	45.4mΩ
58	-31.45V	-0.003uA	45.5mΩ	-31.24V	-0.001uA	45.3mΩ

High Temperature Storage Life Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; IDSS $< -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V, ID=-4.5A$

Test Condition: 150°C, 1000Hrs Test Date: 2017.03.20 ~ 2017.05.02

Test Standard: JESD22 STANDARD Method-A103

Operator: Leo Hsia

Test Result: PASS

Test Result: P	ASS					
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
59	-31.10V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.68V	-0.003uA	$43.9 \mathrm{m}\Omega$
60	-30.80V	-0.001uA	45.6 m Ω	-30.94V	-0.002uA	$43.9 \mathrm{m}\Omega$
61	-31.10V	-0.001uA	$46.7 \mathrm{m}\Omega$	-31.69V	-0.003uA	$45.8 \mathrm{m}\Omega$
62	-31.22V	-0.001uA	$44.4 \mathrm{m}\Omega$	-31.63V	-0.002uA	$47.4 \mathrm{m}\Omega$
63	-31.75V	-0.002uA	$46.4 \mathrm{m}\Omega$	-31.35V	-0.002uA	$43.8 \mathrm{m}\Omega$
64	-31.68V	-0.001uA	$46.7 \mathrm{m}\Omega$	-31.26V	-0.001uA	$47.1 \mathrm{m}\Omega$
65	-31.07V	-0.003uA	$43.8 \mathrm{m}\Omega$	-31.57V	-0.002uA	$47.0 \mathrm{m}\Omega$
66	-31.03V	-0.003uA	$45.4 \mathrm{m}\Omega$	-30.99V	-0.002uA	$44.5 \mathrm{m}\Omega$
67	-31.62V	-0.002uA	$45.2 \mathrm{m}\Omega$	-30.76V	-0.003uA	$47.9 \mathrm{m}\Omega$
68	-31.36V	-0.003uA	$46.9 \mathrm{m}\Omega$	-31.73V	-0.003uA	45.8 m Ω
69	-31.17V	-0.003uA	$46.0 \mathrm{m}\Omega$	-31.51V	-0.001uA	$47.1 \mathrm{m}\Omega$
70	-30.86V	-0.001uA	$43.5 \mathrm{m}\Omega$	-31.02V	-0.002uA	$43.5 \mathrm{m}\Omega$
71	-30.84V	-0.002uA	43.6 m Ω	-31.33V	-0.001uA	$45.5 \mathrm{m}\Omega$
72	-31.41V	-0.001uA	$47.0 \mathrm{m}\Omega$	-31.03V	-0.003uA	$45.9 \mathrm{m}\Omega$
73	-31.40V	-0.001uA	$43.9 \mathrm{m}\Omega$	-30.94V	-0.001uA	45.8 m Ω
74	-30.75V	-0.002uA	$44.1 \mathrm{m}\Omega$	-31.62V	-0.003uA	$44.7 \mathrm{m}\Omega$
75	-30.94V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.65V	-0.002uA	$43.9 \mathrm{m}\Omega$
76	-31.40V	-0.003uA	$46.5 \mathrm{m}\Omega$	-30.71V	-0.002uA	$43.8 \mathrm{m}\Omega$
77	-31.64V	-0.003uA	$45.8 \mathrm{m}\Omega$	-30.72V	-0.003uA	$46.9 \mathrm{m}\Omega$

Made By: Leo Hsia Approval: Peter Yang

Pressure Cooker Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 121°C, 100%RH, 29.7PSIG, 168Hrs

Test Date: 2017.03.20 ~ 2017.03.28

Test Standard: JESD22 STANDARD Method-A102

Operator: Leo Hsia

		Before		After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
1	-31.77V	-0.002uA	$43.8 \mathrm{m}\Omega$	-31.69V	-0.001uA	44.0mΩ	
2	-31.38V	-0.001uA	$43.7 \mathrm{m}\Omega$	-31.36V	-0.001uA	$44.2 \mathrm{m}\Omega$	
3	-31.13V	-0.002uA	43.9mΩ	-30.89V	-0.004uA	45.9mΩ	
4	-31.48V	-0.002uA	$44.8 \mathrm{m}\Omega$	-30.75V	-0.001uA	$47.3 \mathrm{m}\Omega$	
5	-31.34V	-0.003uA	43.7 m Ω	-31.44V	-0.003uA	$46.5 \mathrm{m}\Omega$	
6	-31.75V	-0.003uA	46.8mΩ	-30.78V	-0.002uA	$47.1 \mathrm{m}\Omega$	
7	-31.39V	-0.003uA	46.5mΩ	-30.90V	-0.002uA	$46.8 \mathrm{m}\Omega$	
8	-30.69V	-0.003uA	$46.3 \mathrm{m}\Omega$	-31.37V	-0.003uA	45.7 m Ω	
9	-31.43V	-0.002uA	$44.9 \mathrm{m}\Omega$	-31.55V	-0.003uA	45.1mΩ	
10	-31.63V	-0.003uA	44.6mΩ	-31.44V	-0.003uA	$46.8 \mathrm{m}\Omega$	
11	-31.64V	-0.003uA	46.2mΩ	-31.67V	-0.001uA	45.8 m Ω	
12	-31.01V	-0.002uA	$44.4 \mathrm{m}\Omega$	-31.02V	-0.002uA	45.7mΩ	
13	-31.34V	-0.003uA	$44.9 \mathrm{m}\Omega$	-31.24V	-0.001uA	45.5mΩ	
14	-31.44V	-0.003uA	$47.4 \mathrm{m}\Omega$	-30.94V	-0.001uA	$48.0 \mathrm{m}\Omega$	
15	-30.98V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.08V	-0.002uA	$44.9 \mathrm{m}\Omega$	
16	-31.34V	-0.002uA	$46.0 \mathrm{m}\Omega$	-31.10V	-0.003uA	$46.8 \mathrm{m}\Omega$	
17	-31.78V	-0.003uA	$47.1 \mathrm{m}\Omega$	-31.41V	-0.002uA	$47.9 \mathrm{m}\Omega$	
18	-31.24V	-0.002uA	$47.6 \mathrm{m}\Omega$	-30.67V	-0.002uA	$44.4 \mathrm{m}\Omega$	
19	-30.92V	-0.003uA	$44.8 \mathrm{m}\Omega$	-31.58V	-0.003uA	$47.2 \mathrm{m}\Omega$	
20	-31.08V	-0.001uA	$44.7 \mathrm{m}\Omega$	-31.72V	-0.003uA	$44.4 \mathrm{m}\Omega$	
21	-31.26V	-0.002uA	$46.6 \mathrm{m}\Omega$	-30.74V	-0.003uA	$46.3 \mathrm{m}\Omega$	
22	-31.66V	-0.003uA	$46.3 \mathrm{m}\Omega$	-30.77V	-0.003uA	$46.3 \mathrm{m}\Omega$	
23	-31.49V	-0.003uA	$47.4 \mathrm{m}\Omega$	-30.79V	-0.002uA	$44.4 \mathrm{m}\Omega$	
24	-30.84V	-0.002uA	$47.5 \mathrm{m}\Omega$	-31.13V	-0.002uA	$47.9 \mathrm{m}\Omega$	
25	-30.89V	-0.003uA	$46.0 \mathrm{m}\Omega$	-31.06V	-0.003uA	$44.4 \mathrm{m}\Omega$	
26	-30.88V	-0.003uA	47.3 m Ω	-31.67V	-0.002uA	45.9mΩ	
27	-31.48V	-0.001uA	46.3mΩ	-30.99V	-0.003uA	47.8 m Ω	
28	-31.17V	-0.003uA	46.2mΩ	-30.89V	-0.001uA	45.3mΩ	
29	-31.23V	-0.003uA	46.6mΩ	-30.68V	-0.003uA	46.2mΩ	

Pressure Cooker Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 121°C, 100%RH, 29.7PSIG, 168Hrs

Test Date: 2017.03.20 ~ 2017.03.28

Test Standard: JESD22 STANDARD Method-A102

Operator: Leo Hsia

Test Pegult. DACC

Test Result:	PASS			1		
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
30	-30.88V	-0.003uA	$43.7 \mathrm{m}\Omega$	-31.12V	-0.003uA	47.8 m Ω
31	-30.79V	-0.002uA	$44.1 \mathrm{m}\Omega$	-31.34V	-0.003uA	$46.1 \mathrm{m}\Omega$
32	-31.27V	-0.001uA	$43.7 \mathrm{m}\Omega$	-31.72V	-0.003uA	$47.3 \mathrm{m}\Omega$
33	-31.06V	-0.002uA	$46.8 \mathrm{m}\Omega$	-31.26V	-0.002uA	$46.3 \mathrm{m}\Omega$
34	-30.77V	-0.002uA	$47.3 \mathrm{m}\Omega$	-31.56V	-0.003uA	$45.1 \mathrm{m}\Omega$
35	-31.34V	-0.003uA	$45.6 \mathrm{m}\Omega$	-30.96V	-0.002uA	$44.9 \mathrm{m}\Omega$
36	-30.77V	-0.001uA	$47.8 \mathrm{m}\Omega$	-31.13V	-0.003uA	$47.7 \mathrm{m}\Omega$
37	-31.75V	-0.002uA	$43.7 \mathrm{m}\Omega$	-31.21V	-0.003uA	$47.3 \mathrm{m}\Omega$
38	-30.67V	-0.001uA	$47.4 \mathrm{m}\Omega$	-31.72V	-0.003uA	$44.3 \mathrm{m}\Omega$
39	-31.17V	-0.004uA	$46.2 \mathrm{m}\Omega$	-31.63V	-0.002uA	$46.6 \mathrm{m}\Omega$
40	-31.56V	-0.002uA	$43.5 \mathrm{m}\Omega$	-30.82V	-0.002uA	$44.2 \mathrm{m}\Omega$
41	-30.94V	-0.003uA	$46.2 \mathrm{m}\Omega$	-31.20V	-0.002uA	$45.4 \mathrm{m}\Omega$
42	-31.63V	-0.003uA	$44.9 \mathrm{m}\Omega$	-30.82V	-0.002uA	$47.7 \mathrm{m}\Omega$
43	-30.89V	-0.003uA	$44.9 \mathrm{m}\Omega$	-30.66V	-0.001uA	$45.5 \mathrm{m}\Omega$
44	-31.15V	-0.002uA	$46.7 \mathrm{m}\Omega$	-30.96V	-0.003uA	$47.0 \mathrm{m}\Omega$
45	-31.42V	-0.001uA	$47.0 \mathrm{m}\Omega$	-31.78V	-0.003uA	$46.2 \mathrm{m}\Omega$
46	-31.06V	-0.003uA	$46.7 \mathrm{m}\Omega$	-30.91V	-0.003uA	$45.1 \mathrm{m}\Omega$
47	-30.94V	-0.004uA	$45.2 \mathrm{m}\Omega$	-30.87V	-0.003uA	$46.3 \mathrm{m}\Omega$
48	-31.04V	-0.002uA	$46.9 \mathrm{m}\Omega$	-30.92V	-0.003uA	$46.7 \mathrm{m}\Omega$
49	-31.07V	-0.003uA	$44.5 \mathrm{m}\Omega$	-30.80V	-0.002uA	$43.5 \mathrm{m}\Omega$
50	-31.45V	-0.003uA	$47.7 \mathrm{m}\Omega$	-30.73V	-0.001uA	$46.6 \mathrm{m}\Omega$
51	-30.77V	-0.003uA	$47.3 \mathrm{m}\Omega$	-30.99V	-0.002uA	$44.7 \mathrm{m}\Omega$
52	-31.16V	-0.003uA	$45.3 \mathrm{m}\Omega$	-30.78V	-0.001uA	$46.1 \mathrm{m}\Omega$
53	-30.67V	-0.002uA	$47.8 \mathrm{m}\Omega$	-30.77V	-0.003uA	$47.2 \mathrm{m}\Omega$
54	-31.04V	-0.001uA	$46.3 \mathrm{m}\Omega$	-31.42V	-0.002uA	$45.7 \mathrm{m}\Omega$
55	-31.46V	-0.002uA	$45.9 \mathrm{m}\Omega$	-31.41V	-0.002uA	$45.2 \mathrm{m}\Omega$
56	-31.29V	-0.002uA	46.0mΩ	-31.72V	-0.002uA	$47.3 \mathrm{m}\Omega$
57	-30.97V	-0.002uA	$46.1 \mathrm{m}\Omega$	-31.32V	-0.001uA	$47.5 \mathrm{m}\Omega$
58	-31.47V	-0.002uA	$45.0 \mathrm{m}\Omega$	-31.54V	-0.003uA	$47.7 \mathrm{m}\Omega$

Pressure Cooker Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; IDSS $< -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 121°C, 100%RH, 29.7PSIG, 168Hrs

Test Date: 2017.03.20 ~ 2017.03.28

Test Standard: JESD22 STANDARD Method-A102

Operator: Leo Hsia

Test Result: PASS

Test Result: P	A33					
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	RDS(ON)
59	-31.54V	-0.001uA	$46.6 \mathrm{m}\Omega$	-31.33V	-0.003uA	$45.0 \mathrm{m}\Omega$
60	-30.68V	-0.002uA	$44.4 \mathrm{m}\Omega$	-31.42V	-0.003uA	$44.9 \mathrm{m}\Omega$
61	-31.29V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.72V	-0.002uA	$47.9 \mathrm{m}\Omega$
62	-30.68V	-0.002uA	$46.6 \mathrm{m}\Omega$	-31.44V	-0.002uA	$47.5 \mathrm{m}\Omega$
63	-30.76V	-0.001uA	$48.0 \mathrm{m}\Omega$	-31.66V	-0.001uA	$46.0 \mathrm{m}\Omega$
64	-30.83V	-0.003uA	$46.7 \mathrm{m}\Omega$	-31.63V	-0.004uA	$45.6 \mathrm{m}\Omega$
65	-30.80V	-0.003uA	$45.7 \mathrm{m}\Omega$	-30.62V	-0.002uA	$44.4 \mathrm{m}\Omega$
66	-30.67V	-0.003uA	$47.4 \mathrm{m}\Omega$	-31.42V	-0.002uA	$45.9 \mathrm{m}\Omega$
67	-30.88V	-0.002uA	$43.7 \mathrm{m}\Omega$	-31.01V	-0.001uA	$46.5 \mathrm{m}\Omega$
68	-31.70V	-0.003uA	$44.6 \mathrm{m}\Omega$	-31.71V	-0.002uA	$43.9 \mathrm{m}\Omega$
69	-31.38V	-0.002uA	$44.9 \mathrm{m}\Omega$	-30.88V	-0.003uA	$45.8 \mathrm{m}\Omega$
70	-31.01V	-0.002uA	$45.6 \mathrm{m}\Omega$	-31.73V	-0.003uA	$44.7 \mathrm{m}\Omega$
71	-30.81V	-0.003uA	$46.3 \mathrm{m}\Omega$	-31.00V	-0.004uA	$45.2 \mathrm{m}\Omega$
72	-31.62V	-0.003uA	$47.3 \mathrm{m}\Omega$	-31.54V	-0.003uA	$47.2 \mathrm{m}\Omega$
73	-31.46V	-0.003uA	$45.9 \mathrm{m}\Omega$	-31.24V	-0.003uA	$47.6 \mathrm{m}\Omega$
74	-31.52V	-0.001uA	$46.2 \mathrm{m}\Omega$	-31.49V	-0.001uA	$44.3 \mathrm{m}\Omega$
75	-31.69V	-0.002uA	$45.4 \mathrm{m}\Omega$	-31.40V	-0.002uA	$47.2 \mathrm{m}\Omega$
76	-31.44V	-0.003uA	$44.0 \mathrm{m}\Omega$	-30.70V	-0.002uA	$44.1 \mathrm{m}\Omega$
77	-31.39V	-0.003uA	$46.6 \mathrm{m}\Omega$	-31.37V	-0.002uA	$45.2 \mathrm{m}\Omega$

Made By: Leo Hsia Approval: Peter Yang

Temperature Cycle Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: -55°C/30min, 150°C/30min, for1000 Cycle

Test Date: 2017.03.21 ~ 2017.05.12

Test Standard: JESD22 STANDARD Method-A104

Operator: Leo Hsia

Test Result: PASS

		Before		After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	RDS(ON)	
1	-31.48V	-0.001uA	$44.2 \mathrm{m}\Omega$	-30.66V	-0.003uA	43.6 m Ω	
2	-30.83V	-0.001uA	43.5 m Ω	-31.05V	-0.003uA	$47.9 \mathrm{m}\Omega$	
3	-31.42V	-0.003uA	$45.1 \mathrm{m}\Omega$	-30.77V	-0.001uA	$47.4 \mathrm{m}\Omega$	
4	-30.86V	-0.001uA	$44.0 \mathrm{m}\Omega$	-30.79V	-0.001uA	43.5 m Ω	
5	-31.19V	-0.001uA	$44.4 \mathrm{m}\Omega$	-31.08V	-0.003uA	47.9 m Ω	
6	-31.34V	-0.001uA	$44.3 \mathrm{m}\Omega$	-31.10V	-0.003uA	47.6 m Ω	
7	-31.53V	-0.001uA	$47.0 \mathrm{m}\Omega$	-30.98V	-0.003uA	45.4 m Ω	
8	-31.67V	-0.003uA	45.6 m Ω	-31.33V	-0.003uA	46.0mΩ	
9	-30.94V	-0.003uA	$44.8 \mathrm{m}\Omega$	-31.68V	-0.002uA	$46.2 \mathrm{m}\Omega$	
10	-31.01V	-0.002uA	$46.4 \mathrm{m}\Omega$	-30.73V	-0.003uA	43.9mΩ	
11	-31.29V	-0.001uA	$47.9 \mathrm{m}\Omega$	-31.39V	-0.003uA	43.8mΩ	
12	-30.84V	-0.002uA	45.9 m Ω	-30.63V	-0.002uA	45.1mΩ	
13	-31.66V	-0.003uA	$47.8 \mathrm{m}\Omega$	-31.08V	-0.003uA	45.1mΩ	
14	-30.77V	-0.003uA	46.1mΩ	-31.38V	-0.003uA	44.4mΩ	
15	-31.62V	-0.003uA	$48.0 \mathrm{m}\Omega$	-31.72V	-0.001uA	44.0mΩ	
16	-31.19V	-0.003uA	44.1mΩ	-30.85V	-0.002uA	43.9mΩ	
17	-31.64V	-0.003uA	43.5 m Ω	-31.03V	-0.002uA	44.3mΩ	
18	-31.26V	-0.001uA	$45.4 \mathrm{m}\Omega$	-30.80V	-0.003uA	44.8mΩ	
19	-31.47V	-0.002uA	$44.1 \mathrm{m}\Omega$	-31.02V	-0.003uA	45.8 m Ω	
20	-30.99V	-0.002uA	43.6 m Ω	-31.52V	-0.003uA	43.7 m Ω	
21	-30.68V	-0.003uA	$46.7 \mathrm{m}\Omega$	-31.37V	-0.002uA	45.6mΩ	
22	-31.64V	-0.001uA	46.0mΩ	-30.96V	-0.001uA	47.5mΩ	
23	-31.05V	-0.003uA	45.1mΩ	-31.11V	-0.003uA	45.4mΩ	
24	-31.55V	-0.003uA	$47.5 \mathrm{m}\Omega$	-31.40V	-0.002uA	45.8mΩ	
25	-31.48V	-0.001uA	45.2 m Ω	-31.69V	-0.003uA	43.8mΩ	
26	-31.21V	-0.002uA	46.0mΩ	-31.66V	-0.003uA	47.6mΩ	
27	-31.60V	-0.003uA	47.6mΩ	-31.32V	-0.002uA	46.9mΩ	
28	-30.63V	-0.002uA	45.8mΩ	-31.37V	-0.002uA	46.5mΩ	
29	-30.91V	-0.001uA	46.6mΩ	-31.56V	-0.003uA	44.4mΩ	

Temperature Cycle Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: -55°C/30min, 150°C/30min, for1000 Cycle

Test Date: 2017.03.21 ~ 2017.05.12

Test Standard: JESD22 STANDARD Method-A104

Operator: Leo Hsia

Test Result: PASS

		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	RDS(ON)
30	-30.75V	-0.003uA	45.7mΩ	-31.72V	-0.002uA	45.3mΩ
31	-31.38V	-0.001uA	45.4mΩ	-30.74V	-0.001uA	44.9mΩ
32	-31.73V	-0.003uA	45.7mΩ	-30.88V	-0.002uA	43.8mΩ
33	-31.10V	-0.003uA	46.1mΩ	-30.77V	-0.003uA	47.0 m Ω
34	-31.65V	-0.003uA	45.4mΩ	-31.27V	-0.003uA	47.2mΩ
35	-31.20V	-0.003uA	44.3mΩ	-30.87V	-0.002uA	47.4mΩ
36	-31.55V	-0.002uA	45.6mΩ	-31.12V	-0.002uA	44.4mΩ
37	-31.57V	-0.003uA	46.3mΩ	-31.23V	-0.001uA	43.8mΩ
38	-30.66V	-0.003uA	44.9mΩ	-30.65V	-0.001uA	47.9mΩ
39	-31.70V	-0.001uA	43.9mΩ	-31.33V	-0.003uA	43.4mΩ
40	-30.86V	-0.002uA	46.0mΩ	-31.52V	-0.003uA	45.8mΩ
41	-31.21V	-0.002uA	45.3mΩ	-31.50V	-0.003uA	44.3mΩ
42	-31.73V	-0.002uA	44.9mΩ	-31.08V	-0.003uA	43.5mΩ
43	-31.18V	-0.002uA	46.5mΩ	-31.22V	-0.003uA	44.5mΩ
44	-31.16V	-0.002uA	$47.2 \mathrm{m}\Omega$	-31.56V	-0.002uA	47.8mΩ
45	-31.77V	-0.002uA	$44.5 \mathrm{m}\Omega$	-30.69V	-0.003uA	47.6mΩ
46	-30.79V	-0.001uA	43.6mΩ	-31.25V	-0.001uA	44.5mΩ
47	-31.74V	-0.002uA	46.2mΩ	-30.70V	-0.003uA	47.5mΩ
48	-31.00V	-0.001uA	47.1mΩ	-31.61V	-0.002uA	46.7mΩ
49	-31.38V	-0.003uA	45.0mΩ	-31.32V	-0.002uA	44.4mΩ
50	-31.58V	-0.001uA	$44.0 \mathrm{m}\Omega$	-30.86V	-0.003uA	46.1mΩ
51	-31.30V	-0.003uA	43.7 m Ω	-31.75V	-0.001uA	45.7mΩ
52	-30.75V	-0.001uA	$44.5 \mathrm{m}\Omega$	-31.28V	-0.003uA	45.3mΩ
53	-31.46V	-0.002uA	$44.6 \mathrm{m}\Omega$	-30.92V	-0.003uA	47.9mΩ
54	-30.90V	-0.001uA	$46.2 \mathrm{m}\Omega$	-31.71V	-0.003uA	47.9mΩ
55	-31.34V	-0.002uA	46.6mΩ	-31.01V	-0.004uA	46.8mΩ
56	-30.81V	-0.001uA	$44.7 \mathrm{m}\Omega$	-30.76V	-0.002uA	45.1mΩ
57	-31.05V	-0.001uA	$47.2 \mathrm{m}\Omega$	-30.81V	-0.003uA	47.0mΩ
58	-31.02V	-0.001uA	47.7 m Ω	-30.67V	-0.001uA	44.7mΩ

Temperature Cycle Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: -55°C/30min, 150°C/30min, for1000 Cycle

Test Date: 2017.03.21 ~ 2017.05.12

Test Standard: JESD22 STANDARD Method-A104

Operator: Leo Hsia

Test Result: PASS

Test Result: P	A33					
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
59	-31.69V	-0.002uA	$47.5 \mathrm{m}\Omega$	-31.53V	-0.003uA	$45.1 \mathrm{m}\Omega$
60	-31.26V	-0.002uA	$45.2 \mathrm{m}\Omega$	-31.24V	-0.002uA	$43.5 \mathrm{m}\Omega$
61	-31.28V	-0.002uA	$45.8 \mathrm{m}\Omega$	-31.71V	-0.001uA	$44.1 \mathrm{m}\Omega$
62	-30.99V	-0.001uA	$43.9 \mathrm{m}\Omega$	-30.69V	-0.002uA	$45.5 \mathrm{m}\Omega$
63	-30.96V	-0.001uA	$47.3 \mathrm{m}\Omega$	-31.67V	-0.002uA	$47.0 \mathrm{m}\Omega$
64	-31.23V	-0.002uA	43.7 m Ω	-31.32V	-0.002uA	43.8 m Ω
65	-30.85V	-0.002uA	$47.6 \mathrm{m}\Omega$	-31.45V	-0.003uA	$47.3 \mathrm{m}\Omega$
66	-31.65V	-0.001uA	$47.9 \mathrm{m}\Omega$	-31.55V	-0.002uA	$46.2 \mathrm{m}\Omega$
67	-31.12V	-0.001uA	$46.3 \mathrm{m}\Omega$	-31.41V	-0.003uA	$45.5 \mathrm{m}\Omega$
68	-31.74V	-0.002uA	$47.4 \mathrm{m}\Omega$	-31.40V	-0.003uA	$45.9 \mathrm{m}\Omega$
69	-31.26V	-0.003uA	45.2 m Ω	-31.47V	-0.002uA	$44.5 \mathrm{m}\Omega$
70	-31.59V	-0.002uA	43.6 m Ω	-31.18V	-0.002uA	43.8 m Ω
71	-30.97V	-0.001uA	$47.0 \mathrm{m}\Omega$	-31.55V	-0.003uA	$47.7 \mathrm{m}\Omega$
72	-30.63V	-0.002uA	$47.3 \mathrm{m}\Omega$	-31.66V	-0.001uA	$47.5 \mathrm{m}\Omega$
73	-31.32V	-0.003uA	$44.6 \mathrm{m}\Omega$	-31.19V	-0.003uA	$44.5 \mathrm{m}\Omega$
74	-31.55V	-0.001uA	45.2 m Ω	-31.57V	-0.003uA	$47.7 \mathrm{m}\Omega$
75	-31.64V	-0.002uA	$46.3 \mathrm{m}\Omega$	-31.29V	-0.003uA	$44.9 \mathrm{m}\Omega$
76	-31.09V	-0.002uA	46.9mΩ	-31.26V	-0.004uA	43.6 m Ω
77	-30.80V	-0.003uA	45.7 m Ω	-30.97V	-0.003uA	$43.5 \mathrm{m}\Omega$

Made By: Leo Hsia Approval: Peter Yang

High Temperature High Humidity Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; IDSS $< -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result. PASS

		Before		After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
1	-31.11V	-0.002uA	$44.3 \mathrm{m}\Omega$	-31.41V	-0.002uA	$45.0 \mathrm{m}\Omega$	
2	-31.14V	-0.003uA	$47.5 \mathrm{m}\Omega$	-30.87V	-0.002uA	$44.4 \mathrm{m}\Omega$	
3	-31.47V	-0.003uA	$45.5 \mathrm{m}\Omega$	-31.30V	-0.001uA	$43.7 \mathrm{m}\Omega$	
4	-31.75V	-0.001uA	$47.9 \mathrm{m}\Omega$	-30.76V	-0.002uA	$47.7 \mathrm{m}\Omega$	
5	-30.84V	-0.002uA	$43.5 \mathrm{m}\Omega$	-31.38V	-0.003uA	43.7 m Ω	
6	-31.77V	-0.002uA	45.9mΩ	-31.15V	-0.002uA	$46.9 \mathrm{m}\Omega$	
7	-30.81V	-0.002uA	$46.6 \mathrm{m}\Omega$	-31.30V	-0.003uA	$46.9 \mathrm{m}\Omega$	
8	-30.75V	-0.003uA	46.6mΩ	-31.27V	-0.001uA	47.5 m Ω	
9	-31.48V	-0.001uA	$44.0 \mathrm{m}\Omega$	-31.46V	-0.003uA	46.5mΩ	
10	-30.62V	-0.001uA	$44.8 \mathrm{m}\Omega$	-31.71V	-0.002uA	43.8mΩ	
11	-30.97V	-0.001uA	45.7 m Ω	-31.27V	-0.003uA	$45.4 \mathrm{m}\Omega$	
12	-30.64V	-0.003uA	45.9mΩ	-31.67V	-0.003uA	44.0mΩ	
13	-30.76V	-0.003uA	$47.6 \mathrm{m}\Omega$	-31.49V	-0.003uA	$44.7 \mathrm{m}\Omega$	
14	-30.68V	-0.003uA	$45.8 \mathrm{m}\Omega$	-31.08V	-0.001uA	46.9mΩ	
15	-30.90V	-0.003uA	$44.8 \mathrm{m}\Omega$	-31.19V	-0.001uA	44.2mΩ	
16	-31.33V	-0.002uA	44.3mΩ	-31.05V	-0.003uA	47.7 m Ω	
17	-30.91V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.65V	-0.003uA	$44.7 \mathrm{m}\Omega$	
18	-31.56V	-0.001uA	45.9mΩ	-31.70V	-0.002uA	46.1mΩ	
19	-31.44V	-0.001uA	$47.0 \mathrm{m}\Omega$	-31.03V	-0.002uA	47.6 m Ω	
20	-31.13V	-0.001uA	45.3mΩ	-31.19V	-0.003uA	45.3 m Ω	
21	-30.92V	-0.002uA	47.6mΩ	-30.76V	-0.003uA	46.2mΩ	
22	-30.77V	-0.001uA	$44.9 \mathrm{m}\Omega$	-31.54V	-0.003uA	$46.1 \mathrm{m}\Omega$	
23	-30.96V	-0.003uA	$47.4 \mathrm{m}\Omega$	-30.90V	-0.003uA	46.3mΩ	
24	-30.89V	-0.002uA	45.0mΩ	-30.86V	-0.003uA	46.3mΩ	
25	-30.64V	-0.001uA	$44.2 \mathrm{m}\Omega$	-30.84V	-0.002uA	45.9mΩ	
26	-30.86V	-0.002uA	$44.9 \mathrm{m}\Omega$	-31.63V	-0.003uA	$47.7 \mathrm{m}\Omega$	
27	-31.64V	-0.001uA	$47.3 \mathrm{m}\Omega$	-31.19V	-0.003uA	$43.8 \mathrm{m}\Omega$	
28	-31.64V	-0.001uA	$44.9 \mathrm{m}\Omega$	-31.54V	-0.003uA	45.1mΩ	
29	-30.84V	-0.001uA	43.7 m Ω	-30.88V	-0.003uA	43.9mΩ	

High Temperature High Humidity Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result: PASS

		Before			After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)		
30	-30.77V	-0.001uA	$44.5 \mathrm{m}\Omega$	-30.67V	-0.003uA	$47.0 \mathrm{m}\Omega$		
31	-31.26V	-0.002uA	$45.8 \mathrm{m}\Omega$	-31.40V	-0.002uA	$45.9 \mathrm{m}\Omega$		
32	-30.79V	-0.003uA	$44.8 \mathrm{m}\Omega$	-31.23V	-0.001uA	43.4mΩ		
33	-31.19V	-0.002uA	47.7 m Ω	-31.09V	-0.001uA	47.6 m Ω		
34	-31.49V	-0.003uA	45.4 m Ω	-30.68V	-0.002uA	46.1mΩ		
35	-31.64V	-0.003uA	$44.5 \mathrm{m}\Omega$	-31.40V	-0.003uA	$44.4 \mathrm{m}\Omega$		
36	-31.71V	-0.002uA	$46.1 \mathrm{m}\Omega$	-30.88V	-0.003uA	$45.8 \mathrm{m}\Omega$		
37	-31.09V	-0.002uA	46.1mΩ	-31.36V	-0.001uA	$44.8 \mathrm{m}\Omega$		
38	-31.64V	-0.001uA	46.8mΩ	-31.76V	-0.002uA	$43.9 \mathrm{m}\Omega$		
39	-31.71V	-0.003uA	47.8 m Ω	-30.77V	-0.001uA	46.1mΩ		
40	-30.85V	-0.003uA	45.5 m Ω	-30.77V	-0.003uA	$46.0 \mathrm{m}\Omega$		
41	-30.75V	-0.002uA	$45.4 \mathrm{m}\Omega$	-30.73V	-0.002uA	$46.5 \mathrm{m}\Omega$		
42	-31.08V	-0.002uA	$46.3 \mathrm{m}\Omega$	-31.37V	-0.002uA	$45.9 \mathrm{m}\Omega$		
43	-30.92V	-0.002uA	$47.5 \mathrm{m}\Omega$	-31.19V	-0.001uA	$44.5 \mathrm{m}\Omega$		
44	-31.67V	-0.001uA	$45.0 \mathrm{m}\Omega$	-30.69V	-0.001uA	$45.7 \mathrm{m}\Omega$		
45	-31.41V	-0.001uA	$45.0 \mathrm{m}\Omega$	-30.74V	-0.002uA	$46.2 \mathrm{m}\Omega$		
46	-30.86V	-0.002uA	$45.1 \mathrm{m}\Omega$	-31.59V	-0.002uA	$45.0 \mathrm{m}\Omega$		
47	-31.26V	-0.002uA	$45.7 \mathrm{m}\Omega$	-31.25V	-0.003uA	$44.6 \mathrm{m}\Omega$		
48	-30.62V	-0.002uA	$46.5 \mathrm{m}\Omega$	-31.18V	-0.003uA	$45.9 \mathrm{m}\Omega$		
49	-30.99V	-0.001uA	$46.2 \mathrm{m}\Omega$	-30.78V	-0.002uA	$43.5 \mathrm{m}\Omega$		
50	-31.33V	-0.003uA	$46.4 \mathrm{m}\Omega$	-30.89V	-0.003uA	$46.3 \mathrm{m}\Omega$		
51	-31.47V	-0.002uA	$45.6 \mathrm{m}\Omega$	-31.49V	-0.003uA	$44.4 \mathrm{m}\Omega$		
52	-31.51V	-0.003uA	$43.4 \mathrm{m}\Omega$	-31.49V	-0.002uA	$44.9 \mathrm{m}\Omega$		
53	-31.14V	-0.004uA	$44.9 \mathrm{m}\Omega$	-31.49V	-0.003uA	$45.6 \mathrm{m}\Omega$		
54	-30.69V	-0.003uA	$44.4 \mathrm{m}\Omega$	-31.66V	-0.002uA	$45.5 \mathrm{m}\Omega$		
55	-31.74V	-0.003uA	$45.9 \mathrm{m}\Omega$	-31.55V	-0.004uA	$46.5 \mathrm{m}\Omega$		
56	-31.27V	-0.003uA	43.6 m Ω	-31.22V	-0.002uA	$44.1 \mathrm{m}\Omega$		
57	-31.57V	-0.003uA	$44.8 \mathrm{m}\Omega$	-30.82V	-0.002uA	$46.4 \mathrm{m}\Omega$		
58	-30.90V	-0.001uA	$44.2 \mathrm{m}\Omega$	-31.63V	-0.002uA	$44.9 \mathrm{m}\Omega$		

High Temperature High Humidity Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result: PASS

Test Result: P	ASS					
		Before			After	
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
59	-31.29V	-0.003uA	$43.5 \mathrm{m}\Omega$	-31.08V	-0.003uA	$45.3 \mathrm{m}\Omega$
60	-31.58V	-0.002uA	$47.7 \mathrm{m}\Omega$	-31.69V	-0.002uA	$44.9 \mathrm{m}\Omega$
61	-31.55V	-0.001uA	$45.8 \mathrm{m}\Omega$	-31.04V	-0.001uA	$46.4 \mathrm{m}\Omega$
62	-31.45V	-0.002uA	45.5 m Ω	-31.45V	-0.002uA	$47.7 \mathrm{m}\Omega$
63	-30.67V	-0.002uA	$44.0 \mathrm{m}\Omega$	-31.55V	-0.002uA	$47.9 \mathrm{m}\Omega$
64	-31.17V	-0.003uA	$47.1 \mathrm{m}\Omega$	-30.99V	-0.001uA	$47.9 \mathrm{m}\Omega$
65	-31.05V	-0.001uA	$47.8 \mathrm{m}\Omega$	-31.10V	-0.003uA	$46.0 \mathrm{m}\Omega$
66	-31.38V	-0.002uA	$47.7 \mathrm{m}\Omega$	-31.46V	-0.001uA	$45.7 \mathrm{m}\Omega$
67	-31.60V	-0.002uA	$44.7 \mathrm{m}\Omega$	-31.43V	-0.002uA	$47.8 \mathrm{m}\Omega$
68	-31.66V	-0.002uA	47.6 m Ω	-31.50V	-0.001uA	$46.8 \mathrm{m}\Omega$
69	-31.34V	-0.003uA	$44.2 \mathrm{m}\Omega$	-30.94V	-0.002uA	$48.0 \mathrm{m}\Omega$
70	-31.03V	-0.001uA	$47.5 \mathrm{m}\Omega$	-31.09V	-0.003uA	$46.3 \mathrm{m}\Omega$
71	-31.42V	-0.003uA	$43.8 \mathrm{m}\Omega$	-31.61V	-0.002uA	$46.9 \mathrm{m}\Omega$
72	-31.28V	-0.002uA	44.1m Ω	-30.75V	-0.003uA	$46.3 \mathrm{m}\Omega$
73	-30.70V	-0.002uA	$44.8 \mathrm{m}\Omega$	-31.65V	-0.003uA	$47.5 \mathrm{m}\Omega$
74	-31.28V	-0.003uA	43.7 m Ω	-31.47V	-0.002uA	$43.8 \mathrm{m}\Omega$
75	-31.07V	-0.001uA	43.7 m Ω	-30.84V	-0.003uA	$47.2 \mathrm{m}\Omega$
76	-31.73V	-0.001uA	45.3 m Ω	-31.35V	-0.002uA	45.5 m Ω
77	-31.16V	-0.002uA	43.6 m Ω	-31.63V	-0.001uA	$44.6 \mathrm{m}\Omega$

Approval: Peter Yang Made By: Leo Hsia

High Temper High Humidity Reverse Bies Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 80%VR, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result: PASS

		Before		After		
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
1	-31.68V	-0.001uA	$47.9 \mathrm{m}\Omega$	-31.07V	-0.003uA	$44.1 \mathrm{m}\Omega$
2	-31.61V	-0.002uA	45.7 m Ω	-31.23V	-0.002uA	$46.8 \mathrm{m}\Omega$
3	-30.95V	-0.001uA	45.6mΩ	-31.13V	-0.001uA	$44.7 \mathrm{m}\Omega$
4	-31.22V	-0.001uA	$44.7 \mathrm{m}\Omega$	-30.95V	-0.003uA	46.1mΩ
5	-31.64V	-0.002uA	45.1mΩ	-30.90V	-0.002uA	$44.5 \mathrm{m}\Omega$
6	-31.68V	-0.002uA	$46.5 \mathrm{m}\Omega$	-31.55V	-0.003uA	$45.6 \mathrm{m}\Omega$
7	-31.25V	-0.002uA	$45.9 \mathrm{m}\Omega$	-31.22V	-0.003uA	$44.1 \mathrm{m}\Omega$
8	-31.25V	-0.002uA	$44.9 \mathrm{m}\Omega$	-30.91V	-0.003uA	$47.2 \mathrm{m}\Omega$
9	-31.27V	-0.002uA	$47.1 \mathrm{m}\Omega$	-31.38V	-0.002uA	$47.6 \mathrm{m}\Omega$
10	-31.35V	-0.003uA	$45.4 \mathrm{m}\Omega$	-30.71V	-0.002uA	$46.9 \mathrm{m}\Omega$
11	-30.98V	-0.002uA	$46.0 \mathrm{m}\Omega$	-31.34V	-0.003uA	$46.0 \mathrm{m}\Omega$
12	-31.57V	-0.001uA	43.5 m Ω	-30.85V	-0.002uA	$43.8 \mathrm{m}\Omega$
13	-31.48V	-0.002uA	$46.5 \mathrm{m}\Omega$	-31.33V	-0.003uA	$47.7 \mathrm{m}\Omega$
14	-30.78V	-0.002uA	$45.4 \mathrm{m}\Omega$	-31.06V	-0.002uA	$45.1 \mathrm{m}\Omega$
15	-31.28V	-0.002uA	$45.4 \mathrm{m}\Omega$	-31.07V	-0.001uA	$47.3 \mathrm{m}\Omega$
16	-31.76V	-0.004uA	$47.8 \mathrm{m}\Omega$	-30.76V	-0.002uA	$46.7 \mathrm{m}\Omega$
17	-30.79V	-0.002uA	$45.8 \mathrm{m}\Omega$	-30.70V	-0.002uA	$45.3 \mathrm{m}\Omega$
18	-31.53V	-0.002uA	$44.0 \mathrm{m}\Omega$	-30.75V	-0.002uA	$46.6 \mathrm{m}\Omega$
19	-31.09V	-0.003uA	$44.6 \mathrm{m}\Omega$	-30.90V	-0.004uA	$44.2 \mathrm{m}\Omega$
20	-31.60V	-0.003uA	$46.2 \mathrm{m}\Omega$	-30.83V	-0.002uA	$45.2 \mathrm{m}\Omega$
21	-31.37V	-0.003uA	$44.9 \mathrm{m}\Omega$	-31.76V	-0.003uA	$44.8 \mathrm{m}\Omega$
22	-31.63V	-0.003uA	$47.5 \mathrm{m}\Omega$	-30.67V	-0.003uA	$46.9 \mathrm{m}\Omega$
23	-30.80V	-0.001uA	43.6 m Ω	-31.62V	-0.002uA	$43.7 \mathrm{m}\Omega$
24	-31.60V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.35V	-0.001uA	$44.7 \mathrm{m}\Omega$
25	-30.78V	-0.003uA	47.6mΩ	-31.55V	-0.003uA	$44.0 \mathrm{m}\Omega$
26	-31.25V	-0.001uA	$47.9 \mathrm{m}\Omega$	-30.91V	-0.001uA	$44.9 \mathrm{m}\Omega$
27	-31.54V	-0.002uA	$44.0 \mathrm{m}\Omega$	-31.19V	-0.001uA	$45.8 \mathrm{m}\Omega$
28	-31.21V	-0.003uA	$44.2 \mathrm{m}\Omega$	-31.31V	-0.002uA	$46.0 \mathrm{m}\Omega$
29	-31.27V	-0.003uA	$44.2 \mathrm{m}\Omega$	-31.44V	-0.003uA	$43.5 \mathrm{m}\Omega$

High Temper High Humidity Reverse Bies Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 80%VR, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result: PASS

		Before		After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
30	-30.90V	-0.001uA	$47.0 \mathrm{m}\Omega$	-31.11V	-0.002uA	45.6mΩ	
31	-30.97V	-0.002uA	$47.9 \mathrm{m}\Omega$	-31.72V	-0.001uA	43.6mΩ	
32	-31.08V	-0.003uA	$44.0 \mathrm{m}\Omega$	-31.22V	-0.001uA	45.3 m Ω	
33	-31.09V	-0.002uA	45.5 m Ω	-31.39V	-0.001uA	47.8mΩ	
34	-31.04V	-0.004uA	43.7 m Ω	-30.67V	-0.002uA	47.6mΩ	
35	-30.66V	-0.002uA	$43.9 \mathrm{m}\Omega$	-31.40V	-0.003uA	44.4mΩ	
36	-31.33V	-0.003uA	$45.9 \mathrm{m}\Omega$	-30.85V	-0.002uA	45.6mΩ	
37	-30.82V	-0.001uA	$46.5 \mathrm{m}\Omega$	-31.20V	-0.002uA	47.2mΩ	
38	-31.35V	-0.003uA	$46.0 \mathrm{m}\Omega$	-30.69V	-0.003uA	47.6mΩ	
39	-31.09V	-0.003uA	43.7 m Ω	-31.61V	-0.003uA	47.0mΩ	
40	-31.22V	-0.001uA	$44.8 \mathrm{m}\Omega$	-30.64V	-0.003uA	47.4mΩ	
41	-31.75V	-0.003uA	$48.0 \mathrm{m}\Omega$	-31.16V	-0.001uA	45.6mΩ	
42	-30.68V	-0.003uA	43.6 m Ω	-30.67V	-0.004uA	43.5mΩ	
43	-31.37V	-0.003uA	$47.0 \mathrm{m}\Omega$	-31.42V	-0.002uA	44.5mΩ	
44	-30.87V	-0.002uA	$44.9 \mathrm{m}\Omega$	-31.59V	-0.002uA	45.6mΩ	
45	-30.85V	-0.001uA	45.8mΩ	-31.14V	-0.002uA	46.8mΩ	
46	-31.57V	-0.003uA	43.7 m Ω	-30.92V	-0.002uA	44.9mΩ	
47	-31.38V	-0.003uA	$44.7 \mathrm{m}\Omega$	-31.24V	-0.003uA	44.9mΩ	
48	-30.67V	-0.001uA	46.8mΩ	-31.54V	-0.003uA	46.8mΩ	
49	-31.42V	-0.003uA	$46.9 \mathrm{m}\Omega$	-31.24V	-0.001uA	46.6mΩ	
50	-31.34V	-0.001uA	$47.1 \mathrm{m}\Omega$	-31.52V	-0.001uA	44.6mΩ	
51	-31.11V	-0.002uA	$47.2 \mathrm{m}\Omega$	-30.73V	-0.002uA	46.0mΩ	
52	-31.45V	-0.001uA	43.7 m Ω	-31.41V	-0.003uA	46.7mΩ	
53	-30.88V	-0.003uA	$45.7 \mathrm{m}\Omega$	-31.50V	-0.003uA	44.0mΩ	
54	-31.13V	-0.002uA	$44.2 \mathrm{m}\Omega$	-31.37V	-0.001uA	47.4mΩ	
55	-31.55V	-0.004uA	$46.8 \mathrm{m}\Omega$	-31.37V	-0.003uA	44.9mΩ	
56	-31.00V	-0.003uA	44.9mΩ	-31.60V	-0.003uA	48.0mΩ	
57	-30.78V	-0.001uA	46.2mΩ	-31.76V	-0.003uA	44.9mΩ	
58	-31.44V	-0.003uA	$45.0 \mathrm{m}\Omega$	-31.26V	-0.002uA	43.8mΩ	

SeCoS Corporation

High Temper High Humidity Reverse Bies Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 85±2°C, 85±5%RH, 80%VR, 1000Hrs

Test Date: 2017.03.28 ~ 2017.05.10

Test Standard: JESD22 STANDARD Method-A101

Operator: Leo Hsia

Test Result: PASS

Test Result: I	ASS			-			
	Before			After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
59	-31.19V	-0.002uA	$44.1 \mathrm{m}\Omega$	-30.70V	-0.003uA	$43.7 \mathrm{m}\Omega$	
60	-31.28V	-0.003uA	45.6 m Ω	-31.43V	-0.003uA	$48.0 \mathrm{m}\Omega$	
61	-30.94V	-0.003uA	$46.0 \mathrm{m}\Omega$	-30.86V	-0.002uA	$47.9 \mathrm{m}\Omega$	
62	-30.75V	-0.003uA	45.2 m Ω	-31.33V	-0.003uA	43.6 m Ω	
63	-31.39V	-0.001uA	$47.1 \mathrm{m}\Omega$	-31.76V	-0.003uA	$46.0 \mathrm{m}\Omega$	
64	-31.66V	-0.002uA	$44.1 \mathrm{m}\Omega$	-30.93V	-0.001uA	$47.2 \mathrm{m}\Omega$	
65	-30.92V	-0.002uA	$44.3 \mathrm{m}\Omega$	-31.67V	-0.002uA	$47.0 \mathrm{m}\Omega$	
66	-31.14V	-0.002uA	$43.9 \mathrm{m}\Omega$	-31.47V	-0.001uA	$45.1 \mathrm{m}\Omega$	
67	-31.78V	-0.002uA	$46.7 \mathrm{m}\Omega$	-31.45V	-0.002uA	$43.7 \mathrm{m}\Omega$	
68	-30.82V	-0.003uA	$43.4 \mathrm{m}\Omega$	-31.71V	-0.003uA	$45.2 \mathrm{m}\Omega$	
69	-30.88V	-0.004uA	$47.0 \mathrm{m}\Omega$	-31.07V	-0.003uA	$45.7 \mathrm{m}\Omega$	
70	-30.96V	-0.002uA	$46.5 \mathrm{m}\Omega$	-30.96V	-0.003uA	$46.4 \mathrm{m}\Omega$	
71	-31.29V	-0.001uA	$44.5 \mathrm{m}\Omega$	-31.66V	-0.003uA	$43.8 \mathrm{m}\Omega$	
72	-31.29V	-0.002uA	$44.2 \mathrm{m}\Omega$	-31.60V	-0.003uA	$46.8 \mathrm{m}\Omega$	
73	-31.63V	-0.003uA	$46.0 \mathrm{m}\Omega$	-31.23V	-0.003uA	$45.4 \mathrm{m}\Omega$	
74	-30.93V	-0.003uA	46.3mΩ	-30.89V	-0.003uA	$47.8 \mathrm{m}\Omega$	
75	-31.46V	-0.002uA	$44.7 \mathrm{m}\Omega$	-31.40V	-0.002uA	$47.6 \mathrm{m}\Omega$	
76	-31.33V	-0.001uA	$46.6 \mathrm{m}\Omega$	-31.33V	-0.002uA	$44.3 \mathrm{m}\Omega$	
77	-31.12V	-0.003uA	$44.6 \mathrm{m}\Omega$	-31.14V	-0.001uA	$43.6 \mathrm{m}\Omega$	

Approval: Peter Yang Made By: Leo Hsia

Resistance to Solder Heat Test Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: $270^{\circ}\text{C} \pm 5^{\circ}\text{C}$, 7Sec + 2Sec/-0Sec

Test Date: 2017.05.12

Test Standard: JESD22 STANDARD Method-B106

Operator: Leo Hsia

Test Pegult. DACC

Test Result:	PASS						
	Before			After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
1	-31.74V	-0.002uA	$44.4 \mathrm{m}\Omega$	-31.31V	-0.002uA	$46.6 \mathrm{m}\Omega$	
2	-31.22V	-0.002uA	$44.6 \mathrm{m}\Omega$	-31.45V	-0.001uA	$43.5 \mathrm{m}\Omega$	
3	-31.60V	-0.001uA	$44.5 \mathrm{m}\Omega$	-31.42V	-0.002uA	$43.9 \mathrm{m}\Omega$	
4	-31.03V	-0.002uA	$45.9 \mathrm{m}\Omega$	-30.81V	-0.003uA	$46.5 \mathrm{m}\Omega$	
5	-31.12V	-0.002uA	$45.9 \mathrm{m}\Omega$	-31.38V	-0.001uA	$44.3 \mathrm{m}\Omega$	
6	-31.78V	-0.002uA	$45.2 \mathrm{m}\Omega$	-31.15V	-0.002uA	$45.4 \mathrm{m}\Omega$	
7	-31.75V	-0.001uA	$47.2 \mathrm{m}\Omega$	-31.02V	-0.001uA	$46.7 \mathrm{m}\Omega$	
8	-31.23V	-0.003uA	$45.1 \mathrm{m}\Omega$	-31.54V	-0.003uA	$43.6 \mathrm{m}\Omega$	
9	-30.94V	-0.003uA	$47.0 \mathrm{m}\Omega$	-31.31V	-0.001uA	$44.8 \mathrm{m}\Omega$	
10	-31.43V	-0.003uA	$45.4 \mathrm{m}\Omega$	-30.97V	-0.001uA	$44.3 \mathrm{m}\Omega$	
11	-30.66V	-0.001uA	43.6 m Ω	-31.17V	-0.002uA	$44.9 \mathrm{m}\Omega$	
12	-31.44V	-0.002uA	$47.8 \mathrm{m}\Omega$	-31.21V	-0.002uA	$48.0 \mathrm{m}\Omega$	
13	-31.77V	-0.001uA	$43.7 \mathrm{m}\Omega$	-31.15V	-0.003uA	$46.6 \mathrm{m}\Omega$	
14	-31.46V	-0.003uA	$46.7 \mathrm{m}\Omega$	-31.14V	-0.003uA	$45.1 \mathrm{m}\Omega$	
15	-30.79V	-0.002uA	$45.9 \mathrm{m}\Omega$	-30.64V	-0.003uA	$45.8 \mathrm{m}\Omega$	
16	-31.59V	-0.003uA	45.3 m Ω	-30.77V	-0.002uA	$46.4 \mathrm{m}\Omega$	
17	-30.91V	-0.002uA	$45.4 \mathrm{m}\Omega$	-30.98V	-0.003uA	$45.8 \mathrm{m}\Omega$	
18	-30.66V	-0.002uA	$43.5 \mathrm{m}\Omega$	-30.68V	-0.003uA	$46.0 \mathrm{m}\Omega$	
19	-30.88V	-0.003uA	$45.0 \mathrm{m}\Omega$	-30.68V	-0.001uA	$46.2 \mathrm{m}\Omega$	
20	-31.75V	-0.001uA	$47.6 \mathrm{m}\Omega$	-31.62V	-0.003uA	$47.1 \mathrm{m}\Omega$	
21	-31.40V	-0.002uA	$47.9 \mathrm{m}\Omega$	-31.78V	-0.001uA	$45.6 \mathrm{m}\Omega$	
22	-31.50V	-0.002uA	$46.2 \mathrm{m}\Omega$	-31.55V	-0.003uA	$47.6 \mathrm{m}\Omega$	
23	-31.48V	-0.002uA	$47.0 \mathrm{m}\Omega$	-30.89V	-0.001uA	$43.8 \mathrm{m}\Omega$	
24	-31.69V	-0.002uA	$44.3 \mathrm{m}\Omega$	-31.74V	-0.003uA	$46.9 \mathrm{m}\Omega$	
25	-31.06V	-0.004uA	45.6mΩ	-30.81V	-0.002uA	$45.9 \mathrm{m}\Omega$	
26	-30.78V	-0.003uA	$44.3 \mathrm{m}\Omega$	-31.33V	-0.002uA	$44.9 \mathrm{m}\Omega$	
27	-31.39V	-0.002uA	44.1mΩ	-31.56V	-0.002uA	$47.5 \mathrm{m}\Omega$	
28	-31.07V	-0.001uA	$44.9 \mathrm{m}\Omega$	-31.55V	-0.003uA	$45.9 \mathrm{m}\Omega$	
29	-31.15V	-0.001uA	43.8mΩ	-31.50V	-0.003uA	$44.6 \mathrm{m}\Omega$	

Resistance to Solder Heat Test Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

 $Test\ Condition: -20V < V(BR)DSS@ID = -250\mu A \quad ; \quad IDSS < -1\mu A@VDS = -20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: $270^{\circ}\text{C} \pm 5^{\circ}\text{C}$, 7Sec + 2Sec/-0Sec

Test Date: 2017.05.12

Test Standard: JESD22 STANDARD Method-B106

Operator: Leo Hsia

Test Pegult. DACC

Test Result: 1	PASS						
	Before			After			
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)	
30	-30.69V	-0.002uA	$46.6 \mathrm{m}\Omega$	-31.66V	-0.002uA	$45.8 \mathrm{m}\Omega$	
31	-31.45V	-0.004uA	$46.2 \mathrm{m}\Omega$	-30.88V	-0.001uA	$46.1 \mathrm{m}\Omega$	
32	-30.69V	-0.001uA	$47.4 \mathrm{m}\Omega$	-31.51V	-0.002uA	$45.8 \mathrm{m}\Omega$	
33	-30.67V	-0.003uA	$46.5 \mathrm{m}\Omega$	-30.92V	-0.002uA	$47.8 \mathrm{m}\Omega$	
34	-31.65V	-0.003uA	$43.8 \mathrm{m}\Omega$	-31.47V	-0.002uA	$46.8 \mathrm{m}\Omega$	
35	-31.60V	-0.002uA	$44.5 \mathrm{m}\Omega$	-30.64V	-0.003uA	$47.5 \mathrm{m}\Omega$	
36	-31.65V	-0.003uA	$47.2 \mathrm{m}\Omega$	-31.24V	-0.003uA	$45.1 \mathrm{m}\Omega$	
37	-31.67V	-0.003uA	$47.7 \mathrm{m}\Omega$	-31.07V	-0.002uA	$45.9 \mathrm{m}\Omega$	
38	-31.38V	-0.003uA	$44.6 \mathrm{m}\Omega$	-31.09V	-0.003uA	$46.3 \mathrm{m}\Omega$	
39	-31.12V	-0.003uA	45.3mΩ	-31.75V	-0.002uA	46.3mΩ	
40	-31.03V	-0.002uA	$45.4 \mathrm{m}\Omega$	-30.83V	-0.002uA	$46.9 \mathrm{m}\Omega$	
41	-31.07V	-0.004uA	$47.8 \mathrm{m}\Omega$	-31.00V	-0.003uA	$47.1 \mathrm{m}\Omega$	
42	-31.15V	-0.003uA	$46.9 \mathrm{m}\Omega$	-30.77V	-0.002uA	$44.8 \mathrm{m}\Omega$	
43	-31.01V	-0.002uA	$44.5 \mathrm{m}\Omega$	-30.93V	-0.002uA	$45.2 \mathrm{m}\Omega$	
44	-31.12V	-0.001uA	$46.7 \mathrm{m}\Omega$	-30.65V	-0.001uA	$47.6 \mathrm{m}\Omega$	
45	-30.67V	-0.002uA	43.6 m Ω	-30.83V	-0.003uA	$47.1 \mathrm{m}\Omega$	
46	-30.79V	-0.002uA	$44.4 \mathrm{m}\Omega$	-30.64V	-0.003uA	$46.2 \mathrm{m}\Omega$	
47	-30.88V	-0.003uA	$47.9 \mathrm{m}\Omega$	-30.93V	-0.001uA	$47.3 \mathrm{m}\Omega$	
48	-31.67V	-0.003uA	$47.6 \mathrm{m}\Omega$	-31.54V	-0.001uA	43.6mΩ	
49	-31.04V	-0.003uA	$45.2 \mathrm{m}\Omega$	-31.69V	-0.002uA	$45.2 \mathrm{m}\Omega$	
50	-30.63V	-0.001uA	$44.6 \mathrm{m}\Omega$	-31.20V	-0.002uA	$44.3 \mathrm{m}\Omega$	
51	-31.20V	-0.003uA	$43.8 \mathrm{m}\Omega$	-31.53V	-0.001uA	$48.0 \mathrm{m}\Omega$	
52	-31.72V	-0.002uA	$45.8 \mathrm{m}\Omega$	-30.96V	-0.003uA	$46.9 \mathrm{m}\Omega$	
53	-31.30V	-0.002uA	$43.8 \mathrm{m}\Omega$	-30.77V	-0.003uA	$44.6 \mathrm{m}\Omega$	
54	-31.13V	-0.002uA	44.3mΩ	-30.78V	-0.003uA	46.1mΩ	
55	-31.18V	-0.003uA	44.2mΩ	-30.96V	-0.001uA	$46.8 \mathrm{m}\Omega$	
56	-31.31V	-0.003uA	43.8mΩ	-31.14V	-0.003uA	45.0mΩ	
57	-31.39V	-0.003uA	$47.4 \mathrm{m}\Omega$	-30.97V	-0.001uA	$44.3 \mathrm{m}\Omega$	
58	-31.68V	-0.001uA	46.3mΩ	-31.07V	-0.003uA	$47.6 \mathrm{m}\Omega$	

Resistance to Solder Heat Test Test Data

Report No: T170512-101 Part No: SMG2305-C

Test Equipment: JUNO Test System DTS-1000

Test Condition : $-20V < V(BR)DSS@ID=-250\mu A$; $IDSS < -1\mu A@VDS=-20V$

 $RDS(ON) < 53m\Omega@VGS=-10V$, ID=-4.5A

Test Condition: 270° C $\pm 5^{\circ}$ C, 7Sec + 2Sec/-0Sec

Test Date: 2017.05.12

Test Standard: JESD22 STANDARD Method-B106

Operator: Leo Hsia

Test Result: PASS

Test Result: 1	PASS					
		Before		After		
No	V(BR)DSS	Idss	Rds(on)	V(BR)DSS	Idss	Rds(on)
59	-31.60V	-0.003uA	$43.8 \mathrm{m}\Omega$	-31.20V	-0.002uA	$46.0 \mathrm{m}\Omega$
60	-31.57V	-0.002uA	45.6 m Ω	-31.40V	-0.003uA	$44.2 \mathrm{m}\Omega$
61	-31.49V	-0.003uA	$44.8 \mathrm{m}\Omega$	-30.76V	-0.001uA	$47.8 \mathrm{m}\Omega$
62	-31.70V	-0.003uA	46.0mΩ	-31.14V	-0.001uA	43.9mΩ
63	-30.91V	-0.002uA	$44.9 \mathrm{m}\Omega$	-31.62V	-0.002uA	43.9mΩ
64	-31.14V	-0.002uA	$46.3 \mathrm{m}\Omega$	-31.29V	-0.003uA	$43.5 \mathrm{m}\Omega$
65	-31.75V	-0.001uA	$44.1 \mathrm{m}\Omega$	-31.68V	-0.002uA	$45.4 \mathrm{m}\Omega$
66	-30.93V	-0.003uA	$45.9 \mathrm{m}\Omega$	-31.32V	-0.002uA	$43.6 \mathrm{m}\Omega$
67	-31.12V	-0.003uA	$46.5 \mathrm{m}\Omega$	-31.56V	-0.002uA	$44.2 \mathrm{m}\Omega$
68	-31.51V	-0.002uA	46.1mΩ	-31.45V	-0.002uA	$46.7 \mathrm{m}\Omega$
69	-30.73V	-0.001uA	$46.8 \mathrm{m}\Omega$	-31.73V	-0.003uA	$45.6 \mathrm{m}\Omega$
70	-31.55V	-0.002uA	$45.9 \mathrm{m}\Omega$	-31.56V	-0.001uA	$46.8 \mathrm{m}\Omega$
71	-31.63V	-0.002uA	$48.0 \mathrm{m}\Omega$	-31.55V	-0.001uA	$44.1 \mathrm{m}\Omega$
72	-31.35V	-0.002uA	45.1 m Ω	-31.12V	-0.003uA	$43.9 \mathrm{m}\Omega$
73	-31.56V	-0.003uA	$44.1 \mathrm{m}\Omega$	-31.63V	-0.003uA	$44.8 \mathrm{m}\Omega$
74	-31.03V	-0.002uA	$47.5 \mathrm{m}\Omega$	-30.66V	-0.001uA	$43.7 \mathrm{m}\Omega$
75	-31.31V	-0.002uA	$46.9 \mathrm{m}\Omega$	-31.59V	-0.002uA	$47.5 \mathrm{m}\Omega$
76	-31.75V	-0.003uA	$45.8 \mathrm{m}\Omega$	-31.14V	-0.001uA	$46.9 \mathrm{m}\Omega$
77	-30.99V	-0.002uA	$45.4 \mathrm{m}\Omega$	-31.30V	-0.001uA	$47.6 \mathrm{m}\Omega$

Made By: Leo Hsia Approval: Peter Yang